Skip to main content

Comparative Economic Efficiency of Processing High-Potassium Aluminosilicate Raw Materials into Alumina and Related Products

  • Conference paper
  • First Online:
Light Metals 2024 (TMS 2024)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 1008 Accesses

Abstract

In contrast to the sintering method for processing high-potassium aluminosilicate raw materials, the product range for the hydro-garnet method, in addition to aluminium hydroxide and potassium sulfate, also includes mono-calcium silicate. There are also no solid industrial waste products. Following a detailed technical and economic analysis of both processes, it is concluded that capital costs for the construction of production facilities and annual production costs in the case of the hydro-garnet method are much lower than with the sintering method. Key investment indicators such as Earnings Before Interest, Taxes, Depreciation, Amortization (EBITDA), Earnings Before Interest And Taxes (EBIT), Internal Rate of Return (IRR), Net Present Value (NPV), and Profitability Index (PI) are better in the case of the hydro-chemical technology than for the sintering method. This makes it possible to obtain a payback period for capital investments that is almost 1.7 times lower than in the case of using the sintering method. Taking into account that with the sintering method, direct emissions of carbon dioxide into the atmosphere are almost twice as high as with the hydro-garnet method, it is concluded that the sintering method for processing high-potassium aluminosilicate raw materials is economically less profitable and has more environmental hazards associated with it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meyer F.M. Availability of Bauxite Reserves // Natural Resources Research, 2004. Vol. 13. No. 3. P. 161–172. DOI: https://doi.org/10.1023/B:NARR.0000046918.50121.2e

  2. Blengini G.; Latunussa C.E.L.; Eynard U.; deMatos C.T.; Wittmer D.; Georgitzikis K.; Pavel C.; Carrara S.; Mancini L.; Unguru M.; Blagoeva D., Mathieux F., Pennington D. Study on the EU’s List of Critical RawMaterials, 2020, Final Report; European Commission: Brussels, Belgium, 2020. DOI: https://doi.org/10.2873/867993

  3. Barry T.S., Uysal T., Birinci M., Erdemoglu M. Thermal and Mechanical Activation in Acid Leaching Processes of Non-bauxite Ores Available for Alumina Production-A Review // Mining, Metallurgy & Exploration, 2019. Vol. 36. No. 3. P. 557-569. DOI: https://doi.org/10.1007/s42461-018-0025-7

  4. Bagani M., Balomenos E., Panias D. Nepheline Syenite as an Alternative Source for Aluminum Production // Minerals 2021. Vol. 11. P. 734. DOI: https://doi.org/10.3390/min1107073

  5. Abouzeid A.-Z.M.; Negm A.-T.A. Characterization and beneficiation of an Egyptian nepheline syenite ore // Int. J. Mineral. 2014. Vol. 2014. P. 128246. DOI: https://doi.org/10.1155/2014/128246

  6. Kangal M.O, Bulut G, Yeşilyur Z, Basturkcu H, Burat F. Characterization and production of Turkish nepheline syenites for industrial applications // Physicochem Probl. Miner. Process., 2019. Vol. 55. No. 3. P. 605–616. DOI: https://doi.org/10.5277/ppmp18172

  7. Elmaghraby M., Ismail A., Ghabrial D.S., Abd El-Shakour Z. Effect of nepheline syenite additives on the technological behavior of ceramics and porcelain stoneware tiles // Silicon. 2020. Vol. 12. No. 5. P. 1125–1136. DOI: https://doi.org/10.1007/s12633-019-00217-2

  8. Kogel J.E., Trivedi N.C., Barker J.M., Krukowski S.T. Industrial minerals & rocks: commodities, markets, and uses. USA: Society for Mining, Metallurgy, and Exploration. 2006. 1548 p.

    Google Scholar 

  9. Jena S.K., Dash N., Samal A.K., Misra P.K. 2019. Competency of chlorination roasting coupled water leaching process for potash recovery from K-feldspar: mechanism and kinetics aspects // Korean J. Chem. Eng. 2019. Vol. 36. No. 12. P. 2060–2073. DOI: https://doi.org/10.1007/s11814-019-0393-9

  10. Jena S.K., Dhawan N., Rao D.S., Misra P.K., Mishra B.K., Das B. 2014. Studies on extraction of potassium values from nepheline syenite // Int. J. Miner. Process, 2014. Vol. 133. P. 13–22. DOI: https://doi.org/10.1016/J.MINPRO.2014.09.006

  11. Samantray J., Anand A., Dash B., Ghosh M.K., Behera A.K. Nepheline syenite - an alternative source for potassium and aluminium. In: Azimi G., Kim H., Alam S., Ouchi T., Neelameggham N, Baba A, editors. Rare metal technology 2019. The Minerals, Metals & Materials Series. Cham: Springer; P. 145–159. DOI: https://doi.org/10.1007/978-3-030-05740-4_15

  12. Lipin V.A, Tikhonov N.N. Features of alumina production technology from alumosilicate raw material with potassium’s high contain // In: Huglen R (ed) Light metals 1997. The Minerals, Metals & Material Society, P. 137–141.

    Google Scholar 

  13. Mohammadloo K., Barakan S., Shayanfar S., Aghazadeh V. Kinetics Studies of Sintered Nepheline Syenite Alkaline Leaching under Atmospheric Pressure // Trans. Indian. Inst. Met. 2021. Vol. 74. P. 2105–2115. DOI: https://doi.org/10.1007/s12666-021-02300-y

  14. Barakan S., Ayaluey M.N., Shayanfar S., Aghazadeh V. Production and characterisation of sodium and potassium carbonate salts from carbonation alkaline aluminate liquor // Mineral Processing and Extractive Metallurgy, 2022. Vol. 131. No. 3. P. 211-219. DOI: https://doi.org/10.1080/25726641.2021.1935163

  15. Brichkin V.N., Sizyakov V.M., Novikov N.A. et al. The composition of the charge for the production of alumina. Patent RF, No. 2755789. Published: 21.09.2021. Bulletin No. 33.

    Google Scholar 

  16. Eldeeb A.B., Brichkin V.N., Bertau M., Awad M.E., Savinova Y.A. Enhanced alumina extraction from kaolin by thermochemical activation using charcoal // Clay Minerals. 2022. Vol.56. No. 4. P. 269–283. DOI: https://doi.org/10.1180/clm.2022.7

  17. Lipin V.A., Sofronova E.D. Low-Quality Aluminum-Containing Raw Materials: Experience, Problems and Prospects // In: Tomsett, A. (eds) Light Metals 2020. The Minerals, Metals & Materials Society. Springer, Cham. P. 26–32. DOI: https://doi.org/10.1007/978-3-030-36408-3_4

  18. Hamilton J.P., Brantley S.L., Pantano C.G., Criscenti L.J., Kubicki J.D. Dissolution of nepheline, jadeite and albite glasses: Toward better models for aluminosilicate dissolution // Geochimica et Cosmochimica Acta, 2001. Vol. 65. No. 21. P. 3683–3702.

    Google Scholar 

  19. Al-Zahrani A.A., Abdul-Majid M.H. Extraction of Alumina from Local Clays by Hydrochloric Acid Process // Engineering Science: Journal of King Abdulaziz University, 2009. Vol. 20. No. 2. P. 29-41

    Google Scholar 

  20. Nizami A.R. Preparation of industrial chemicals by acid leaching from the koga nepheline syenite, southern Swat, lesser Himalayas-Pakistan // J. Chem. Soc. Pak, 2012. Vol. 34. No. 3. P. 570-574

    Google Scholar 

  21. Yao Z.T., Xia M.S., Sarker P.K., Chen T. A review of the alumina recovery from coal fly ash, with a focus in China // Fuel, 2014. Vol. 120. P. 74-85. DOI: https://doi.org/10.1016/j.fuel.2013.12.003

  22. Terry B. The acid decomposition of silicate minerals part I. Reactivities and modes of dissolution of silicates // Hydrometallurgy, 1983. Vol. 10, N. 2, P. 135-150. DOI: https://doi.org/10.1016/0304-386X(83)90002-6

  23. Aranda A., Mastin J. Alumina and Carbonate Production Method from Al-Rich Materials with Integrated CO2 Utilization. U.S. Patent 9,963,352, 11 March 2015.

    Google Scholar 

  24. Maria B., Efthymios B., Dimitrios P. Exploitation of Kaolin as an Alternative Source in Alumina Production // Mater. Proc. 2021. Vol. 5. P. 24. DOI: https://doi.org/10.3390/materproc2021005024

  25. Mukhymbekova M.D., Rakhimov A.R., Ponomarev V.D. Processing of aluminosilicate slags (to obtain alumina) by soda sintering // Research papers of the Institute for Chemistry and Metallurgy at the Academy of Sciences of the Kazakh SSR. 1969. Vol. 11. pp. 9–16.

    Google Scholar 

  26. Sazhin V.S. Novel hydrochemical techniques for producing alumina. Kiev: Naukova dumka, 1979. 203 p.

    Google Scholar 

  27. Medvedev V.V., Kiselev A.I., Akhmedov S.N. et al. Hydrochemical method of processing aluminosilicate material. Patent RF, No. 2193525. Published: 27.11.2002. Bulletin No. 33.

    Google Scholar 

  28. Medvedev V.V., Akhmedov S.N., Lipin V.A. Hydrogarnet process as a modern approach to hydrometallurgical alkaline processing of low-grade bauxites. Review // Tsvetnye Metally. 2023. N. 1. P. 51–57. DOI: https://doi.org/10.17580/tsm.2023.01.06

  29. Lager G.A., Nipko J.C., Loong C.-K. Inelastic neutron scattering study of the (O4H4) substitution in garnet, Physica B: Condensed Matter. 1998. V. 241–243. P. 406–408. DOI: https://doi.org/10.1016/S0921-4526(97)00603-0

  30. Ballaran T.B., Woodland A.B. Local structure of ferric iron-bearing garnets deduced by IR-spectroscopy, Chem. Geol. 2006. V. 225. P. 360–372. DOI: https://doi.org/10.1016/J.CHEMGEO.2005.08.028

  31. Locock A.J. An excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets, Comput. Geosci. 2008. V. 34. P. 1769–1780. DOI: https://doi.org/10.1016/j.cageo.2007.12.013.

  32. Nobes R.H., Akhmatskaya E.V., Milman V., Winkler B., Pickard C.J. Structure and properties of aluminosilicate garnets and katoite: an ab initio study, Comput. Mater. Sci. 2000. V. 17. P. 141–145. DOI: https://doi.org/10.1016/S0927-0256(00)00011-2.

  33. https://www.verifiedmarketresearch.com/product/wollastonite-powder-market/

  34. Weber T.A., On the (non-)equivalence of IRR and NPV // Journal of Mathematical Economics, 2014. Vol. 52(C), P. 25–39. DOI: https://doi.org/10.1016/j.jmateco.2014.03.006

  35. Nguyen R.T., Diaz L.A., Imholte D.D. et al. Economic Assessment for Recycling Critical Metals From Hard Disk Drives Using a Comprehensive Recovery Process // JOM 2017. Vol. 69. P. 1546–1552 DOI: https://doi.org/10.1007/s11837-017-2399-2

  36. Siziba S., Hall J. The evolution of the application of capital budgeting techniques in enterprises // Global Finance Journal, 2021. Vol. 47. P. 100504. DOI: https://doi.org/10.1016/j.gfj.2019.100504

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Seitenov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Seitenov, R.A., Lipin, V.A., Akhmedov, S.N., Medvedev, V.V. (2024). Comparative Economic Efficiency of Processing High-Potassium Aluminosilicate Raw Materials into Alumina and Related Products. In: Wagstaff, S. (eds) Light Metals 2024. TMS 2024. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-50308-5_10

Download citation

Publish with us

Policies and ethics