Skip to main content

Assessing MgO/Al2O3 Effect on Limonitic Laterite Sintering Process

  • Conference paper
  • First Online:
Characterization of Minerals, Metals, and Materials 2024 (TMS 2024)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 602 Accesses

Abstract

Sintering-blast furnace process is one of the most common methods for treating limonitic laterite. To reduce the negative impact of high aluminum content on the viscosity of blast furnace slag, adjusting the MgO/Al2O3 ratio of sinter is simple and effective. However, the effect of MgO/Al2O3 on the sintering process of limonitic laterite is still not clear. In this study, the effect of MgO/Al2O3 ratio on the output and quality indexes, phase compositions, and liquid phase content of sinter was investigated detailly. The results indicated that within the range of MgO/Al2O3 of 0.1–0.4, the output and quality indexes of the limonitic laterite sinter showed minimal fluctuations. While the value exceeded 0.4, the liquid phase content in the sinter significantly decreased, leading to a reduction of sinter strength. The MgO content in the liquid phase approached saturation after 0.4 MgO/Al2O3, further increasing the ratio would cause MgO to accumulate in spinel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luo J, Li G, Rao M, Peng Z, Liang G, Jiang T, Guo X (2020) Control of slag formation in the electric furnace smelting of ferronickel for an energy-saving production. J Clean Prod 287:125082. https://doi.org/10.1016/j.jclepro.2020.125082

    Article  CAS  Google Scholar 

  2. Uddin MH, Khajavi LT (2020) The effect of sulfur in rotary kiln fuels on nickel laterite calcination. Miner Eng 157:106563. https://doi.org/10.1016/j.mineng.2020.106563

    Article  CAS  Google Scholar 

  3. Hang G, Xue Z, Wu Y (2020) Preparation of high-grade ferronickel from low-grade nickel laterite by self-reduction and selective oxidation with CO2–CO gas. Miner Eng 151:106318. https://doi.org/10.1016/j.mineng.2020.106318

    Article  CAS  Google Scholar 

  4. Chen J, Jak E, Hayes PC (2019) Investigation of the reduction roasting of saprolite ores in the caron process: microstructure evolution and phase transformations. Miner Process Exir Metall 130:148–159. https://doi.org/10.1080/25726641.2019.1699361

    Article  CAS  Google Scholar 

  5. Zhu D, Xue Y, Pan J, Yang C, Guo Z, Tian H, Liao H, Pan L, Huang X (2020) An investigation into the distinctive sintering performance and consolidation mechanism of limonitic laterite ore. Powder Technol 367:616–631. https://doi.org/10.1016/j.powtec.2020.03.066

    Article  CAS  Google Scholar 

  6. Xue Y, Zhu D, Pan J, Guo Z, Yang C, Tian H, Duan X, Huang Q, Pan L, Huang X (2020) Effective utilization of limonitic nickel laterite via pressurized densification process and its relevant mechanism. Minerals 10(9):750. https://doi.org/10.3390/min10090750

    Article  CAS  Google Scholar 

  7. Zhu D, Xue Y, Pan J, Yang C, Guo Z, Tian H, Wang X, Huan Q, Pan L, Huang X (2020) Co-benefits of CO2 emission reduction and sintering performance improvement of limonitic laterite via hot exhaust-gas recirculation sintering. Powder Technol 373:727–740. https://doi.org/10.1016/j.powtec.2020.07.018

    Article  CAS  Google Scholar 

  8. Wang Z, Zhang J, Zuo H, Wang R, Huang K, Ban Y (2013) Influence of MgO/Al2O3 ratio on sinter mineral composition and metallurgical properties. Sinter Pellet 38(5):1–7. https://doi.org/10.13403/j.sjqt.2013.05.002

  9. Hu C, Yan L, Zhang G, Zhao K, Shi X (2018) Effect of MgO/Al2O3 on microscopic structure and micro-hardness of silico-ferrite of calcium and aluminum (SFCA). Sinter Pellet 43(2):14–19. https://doi.org/10.13403/j.sjqt.2018.02.019

  10. Fan X, Zhao Y, Ji Z, Li H, Gan M, Zhou H, Chen X, Huang X (2021) New understanding about the relationship between surface ignition and low-carbon iron ore sintering performance. Process Saf Environ 146:267–275. https://doi.org/10.1016/j.psep.2020.09.004

    Article  CAS  Google Scholar 

  11. Wong G, Fan X, Gan M, Ji Z, Ye H, Zhou Z, Wang Z (2020) Resource utilization of municipal solid waste incineration fly ash in iron ore sintering process: a novel thermal treatment. J Clean Prod 263:121400. https://doi.org/10.1016/j.jclepro.2020.121400

    Article  CAS  Google Scholar 

  12. Chun T, Long H, Di Z, Zhang X, Wu X, Qian L (2017) Novel technology of reducing SO2 emission in the iron ore sintering. Process Saf Environ Prot 105:297–302. https://doi.org/10.1016/j.psep.2016.11.012

    Article  CAS  Google Scholar 

  13. Liu Z, Cheng Q, Li K, Wang Y, Zhang J (2020) The interaction of nanoparticulate Fe2O3 in the sintering process: a molecular dynamics simulation. Powder Technol 367:97–104. https://doi.org/10.1016/j.powtec.2020.03.043

    Article  CAS  Google Scholar 

  14. Zhang Y, Liu B, You Z, Su Z, Luo W, Li G, Jiang T (2016) Consolidation behavior of high-Fe manganese ore sinter with natural basicity. Miner Process Exir Metall Rev 37:333–341. https://doi.org/10.1080/08827508.2016.1218870

    Article  CAS  Google Scholar 

  15. Tu Y, Zhang Y, Su Z, Jiang T (2022) Mineralization mechanism of limonitic laterite sinter under different fuel dosage: effect of FeO. Powder Technol 398:117064. https://doi.org/10.1016/j.powtec.2021.117064

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would express their sincere thanks to National Natural Science Foundation of China (Number U1960114), The Science and Technology Innovation Program of Hunan Province (2023RC1025), and Xuchang Talent Plan (Number 2021-178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanbo Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tu, Y., Zhang, Y., Su, Z. (2024). Assessing MgO/Al2O3 Effect on Limonitic Laterite Sintering Process. In: Peng, Z., et al. Characterization of Minerals, Metals, and Materials 2024. TMS 2024. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-50304-7_11

Download citation

Publish with us

Policies and ethics