Skip to main content

Adsorption Kinetics of Carbon Dioxide in Polymer-Inorganic Powder Composite Materials

  • Conference paper
  • First Online:
Energy Technology 2024 (TMS 2024)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 494 Accesses

Abstract

One of the major problems in modern society is the huge demand for energy which has as a consequence an enormous amount of waste gas production. Composite materials based on polyethylene oxide matrix and inorganic zeolite powders have been observed to show good properties in the field of carbon dioxide separation. In previous experiments, it has been shown that PEO-zeolite-based membranes show good performance at temperatures up to 398K both in dry and wet conditions. In this work, the influence of the pressure of the waste gases as well as the influence of the partial pressure of the carbon dioxide in the mixture on the overall performance of the membrane were tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Desideri U, Corbelli R (1998) CO2 capture in small size cogeneration plants: technical and economical considerations

    Google Scholar 

  2. Rao AB, Rubin ES (2002) A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ Sci Technol 36(20):4467–4475. https://doi.org/10.1021/es0158861

    Article  Google Scholar 

  3. Mitsch WJ, Bernal B, Nahlik AM, Mander Ü, Zhang L, Anderson CJ, Jørgensen SE, Brix H (2013) Wetlands, carbon, and climate change. Landsc Ecol 28(4):583–597. https://doi.org/10.1007/s10980-012-9758-8

    Article  Google Scholar 

  4. Walsh B, Ciais P, Janssens IA, Peñuelas J, Riahi K, Rydzak F, van Vuuren DP, Obersteiner M (2017) Pathways for balancing CO2 emissions and sinks. Nat Commun 8(1):14856. https://doi.org/10.1038/ncomms14856

    Article  Google Scholar 

  5. Chang P-H, Lee T-J, Chang Y-P, Chen S-Y (2013) CO2 sorbents with scaffold-like Ca∙Al layered double hydroxides as precursors for CO2 capture at high temperatures. Chemsuschem 6(6):1076–1083. https://doi.org/10.1002/cssc.201200910

    Article  Google Scholar 

  6. Kuppan CS, Chavali M (2019) CO2 sequestration: processes and methodologies. In: Martínez LMT, Kharissova OV, Kharisov BI (eds) Handbook of ecomaterials. Springer International Publishing, Cham, pp 619–668. https://doi.org/10.1007/978-3-319-68255-6_6

  7. Lin Y-J, Pan T-H, Wong S-H, Jang S-S. Plantwide control of CO2 capture by absorption and stripping using monoethanolamine solution

    Google Scholar 

  8. Duarte GS, Schürer B, Voss C, Bathen D (2017) Adsorptive separation of CO2 from flue gas by temperature swing adsorption processes. ChemBioEng Rev 4(5):277–288. https://doi.org/10.1002/cben.201600029

    Article  Google Scholar 

  9. Villalobos LF, Hilke R, Akhtar FH, Peinemann K-V (2018) Fabrication of polybenzimidazole/palladium nanoparticles hollow fiber membranes for hydrogen purification. Adv Energy Mater 8(3):1701567. https://doi.org/10.1002/aenm.201701567

    Article  Google Scholar 

  10. Li J-R, Ma Y, McCarthy MC, Sculley J, Yu J, Jeong H-K, Balbuena PB, Zhou H-C (2011) Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord Chem Rev 255(15):1791–1823. https://doi.org/10.1016/j.ccr.2011.02.012

    Article  Google Scholar 

  11. Vericella JJ, Baker SE, Stolaroff JK, Duoss EB, Hardin JO, Lewicki J, Glogowski E, Floyd WC, Valdez CA, Smith WL, Satcher JH, Bourcier WL, Spadaccini CM, Lewis JA, Aines RD (2015) Encapsulated liquid sorbents for carbon dioxide capture. Nat Commun 6(1):6124. https://doi.org/10.1038/ncomms7124

    Article  Google Scholar 

  12. Lee HJ, Kang SW (2020) CO2 separation with polymer/aniline composite membranes. Polymers 12(6):1363. https://doi.org/10.3390/polym12061363

    Article  Google Scholar 

  13. Živković LA, Pohar A, Likozar B, Nikačević NM (2016) Kinetics and reactor modeling for CaO sorption-enhanced high-temperature water-gas shift (SE–WGS) reaction for hydrogen production. Appl Energy 178:844–855. https://doi.org/10.1016/j.apenergy.2016.06.071

    Article  Google Scholar 

  14. Živković L, Pohar A, Likozar B, Nikačević N (2019) Reactor conceptual design by optimization for hydrogen production through intensified sorption- and membrane-enhanced water-gas shift reaction. Chem Eng Sci 211:115174. https://doi.org/10.1016/j.ces.2019.115174

    Article  Google Scholar 

  15. Ješić D, Lašič Jurković D, Pohar A, Suhadolnik L, Likozar B (2021) Engineering photocatalytic and photoelectrocatalytic CO2 reduction reactions: mechanisms, intrinsic kinetics, mass transfer resistances, reactors and multi-scale modelling simulations. Chem Eng J 407:126799. https://doi.org/10.1016/j.cej.2020.126799

    Article  Google Scholar 

  16. Nunes SP, Peinemann KV (2001) Membrane technology in the chemical industry. Weinheim, New York, Wiley-VCH

    Google Scholar 

  17. Koros WJ, Fleming GK, Jordan SM, Kim TH, Hoehn HH (1988) Polymeric membrane materials for solution-diffusion based permeation separations. Prog Polym Sci 13(4):339–401. https://doi.org/10.1016/0079-6700(88)90002-0

    Article  Google Scholar 

  18. Akhtar FH, Kumar M, Vovusha H, Shevate R, Villalobos LF, Schwingenschlögl U, Peinemann K-V (2019) Scalable synthesis of amphiphilic copolymers for CO2—and water-selective membranes: effect of copolymer composition and chain length. Macromolecules 52(16):6213–6226. https://doi.org/10.1021/acs.macromol.9b00528

    Article  Google Scholar 

  19. Nedeljkovic D (2021) Homogenization of the dense composite membranes for carbon dioxide separation‬ energy technology 2021: carbon dioxide management and other technologies. 51‬‬‬‬‬‬‬‬‬‬‬‬

    Google Scholar 

  20. Lin H, Freeman BD (2004) Gas solubility, diffusivity and permeability in poly(ethylene oxide). J Membr Sci 239(1):105–117. https://doi.org/10.1016/j.memsci.2003.08.031

    Article  Google Scholar 

  21. Lin H, Freeman B (2005) Materials selection guidelines for membranes that remove CO2 from gas mixtures. J Mol Struct 739:57–74. https://doi.org/10.1016/j.molstruc.2004.07.045

    Article  Google Scholar 

  22. Jankowski A, Grabiec E, Nocoń-Szmajda K, Marcinkowski A, Janeczek H, Wolińska-Grabczyk A (2021) Polyimide-based membrane materials for CO2 separation: a comparison of segmented and aromatic (co)polyimides. Membranes 11(4):274. https://doi.org/10.3390/membranes11040274

    Article  Google Scholar 

  23. Esposito E, Bruno R, Monteleone M, Fuoco A, Ferrando Soria J, Pardo E, Armentano D, Jansen JC (2020) Glassy PEEK-WC vs. Rubbery Pebax®1657 polymers: effect on the gas transport in CuNi-MOF based mixed matrix membranes. Appl Sci 10(4):1310. https://doi.org/10.3390/app10041310

  24. Baker RW (2012) Membrane technology and applications, 3rd edn. Wiley, Chichester, West Sussex, Hoboken

    Google Scholar 

  25. Baker RW (2002) Future directions of membrane gas separation technology. Ind Eng Chem Res. https://doi.org/10.1021/ie0108088

    Article  Google Scholar 

  26. Nedeljkovic D (2021) The effect of the temperature and moisture to the permeation properties of PEO-based membranes for carbon-dioxide separation. Polymers 13(13):2053. https://doi.org/10.3390/polym13132053

    Article  Google Scholar 

  27. Chen JC, Feng X, Penlidis A (2005) Gas permeation through poly(ether-b-amide) (PEBAX 2533) block copolymer membranes. Sep Sci Technol 39(1):149–164. https://doi.org/10.1081/SS-120027406

    Article  Google Scholar 

  28. Bondar VI, Freeman BD, Pinnau I (1999) Gas sorption and characterization of poly(ether-b-amide) segmented block copolymers. J Polym Sci Part B Polym Phys 37(17):2463–2475. https://doi.org/10.1002/(SICI)1099-0488(19990901)37:17<2463::AID-POLB18>3.0.CO;2-H.

  29. Bondar VI, Freeman BD, Pinnau I (2000) Gas transport properties of poly(ether-b-amide) segmented block copolymers. J Polym Sci Part B Polym Phys 38(15):2051–2062. https://doi.org/10.1002/1099-0488(20000801)38:15<2051::AID-POLB100>3.0.CO;2-D

  30. Kupka V, Dvořáková E, Manakhov A, Michlíček M, Petruš J, Vojtová L, Zajíčková L (2020) Well-blended PCL/PEO electrospun nanofibers with functional properties enhanced by plasma processing. Polymers 12(6):1403. https://doi.org/10.3390/polym12061403

    Article  Google Scholar 

  31. Asghari M, Mosadegh M, Riasat Harami H (2018) Supported PEBA-Zeolite 13X nano-composite membranes for gas separation: preparation, characterization and molecular dynamics simulation. Chem Eng Sci 187:67–78. https://doi.org/10.1016/j.ces.2018.04.067

    Article  Google Scholar 

  32. Chen XY, Nik OG, Rodrigue D, Kaliaguine S (2012) Mixed matrix membranes of aminosilanes grafted FAU/EMT zeolite and cross-linked polyimide for CO2/CH4 separation. Polymer 53(15):3269–3280. https://doi.org/10.1016/j.polymer.2012.03.017

    Article  Google Scholar 

  33. Yoshino M, Ito K, Kita H, Okamoto K-I (2000) Effects of hard-segment polymers on CO2/N2 gas-separation properties of poly(ethylene oxide)-segmented copolymers. J Polym Sci Part B Polym Phys 38(13):1707–1715. https://doi.org/10.1002/1099-0488(20000701)38:13<1707::AID-POLB40>3.0.CO;2-W

  34. Buttersack C, Rudolph H, Mahrholz J, Buchholz K (1996) High specific interaction of polymers with the pores of hydrophobic zeolites. Langmuir 12(13):3101–3106. https://doi.org/10.1021/la950727e

    Article  Google Scholar 

  35. Car A, Stropnik C, Yave W, Peinemann K-V (2008) Tailor-made polymeric membranes based on segmented block copolymers for CO2 separation. Adv Funct Mater 18(18):2815–2823. https://doi.org/10.1002/adfm.200800436

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragutin Nedeljkovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nedeljkovic, D. (2024). Adsorption Kinetics of Carbon Dioxide in Polymer-Inorganic Powder Composite Materials. In: Iloeje, C., et al. Energy Technology 2024. TMS 2024. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-50244-6_4

Download citation

Publish with us

Policies and ethics