Skip to main content

The Effect of Powder Size and Morphology on the Sinterability of Bioresorbable Mg-Sr/Ca Alloys

  • Conference paper
  • First Online:
Magnesium Technology 2024 (TMS 2024)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 533 Accesses

Abstract

Possessing outstanding biocompatibility and bioresorbability, magnesium (Mg) alloys with strontium (Sr) and calcium (Ca) additions have shown potential to be used as temporary implants in orthopaedic applications. Having a low elastic modulus (45 GPa) close to the human bone lowers the stress shielding effects. Low temperature additive manufacturing (AM) techniques (e.g., Fused Deposition Modelling) have potential to be used for the fabrication of complex Mg components while avoiding safety concerns associated with high temperature AM. However, low sinterability of common Mg alloys is the main limiting factor. The objective of this work is to investigate the effect of powder particle size/morphology on the sinterability of Mg-Ca/Sr-based alloys produced via powder metallurgy. Laser diffraction and Scanning Electron Microscopy (SEM) were used to characterize particle size and morphology. The study also focused on assessing the role of liquid phase sintering (LPS) mechanism by thermodynamic calculations and microstructural characterisation (SEM). Porosity measurements using density analysis and image processing were employed to determine the effects of powder size and morphology on sinterability of the alloys. It was found that the non-homogeneous particle size distribution with more spherical powder particles, facilitated the compaction and accordingly higher densification was obtained. This was achieved for powders milled at higher speeds (900 rpm), resulting in significantly lower porosity levels (~ 6–8%) compared to the dry-milled state (~ 40–60%).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jamel MM, Jamel MM, Lopez HF (2022) Designing Advanced Biomedical Biodegradable Mg Alloys: A Review. Metals 12(1):85. https://doi.org/10.3390/met12010085

    Article  CAS  Google Scholar 

  2. Sharma SK, Saxena KK, Malik V, Mohammad KA, Prakash C, Buddhi D, Dixit S (2022) Significance of Alloying Elements on the Mechanical Characteristics of Mg-Based Materials for Biomedical Applications. Cryst. 12(8):1138. https://doi.org/10.3390/cryst12081138

    Article  CAS  Google Scholar 

  3. Amukarimi S, Mozafari M (2021) Biodegradable magnesium-based biomaterials: An overview of challenges and opportunities. Med Comm. 2(2):123–144. https://doi.org/10.1002/mco2.59

    Article  CAS  Google Scholar 

  4. Zhou H, Liang B, Jiang H, Deng Z, Yu K (2021) Magnesium-based biomaterials as emerging agents for bone repair and regeneration: from mechanism to application. JMA 9(3):779–804. https://doi.org/10.1016/j.jma.2021.03.004

    Article  CAS  Google Scholar 

  5. Alam ME, Pal S, Decker R, Ferreri NC, Knezevic M, Beyerlein IJ (2020) Rare-earth- and aluminum-free, high strength dilute magnesium alloy for Biomedical Applications. Sci. Rep. 10(1):15839. https://doi.org/10.1038/s41598-020-72374-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maier P, Hort N (2020) Magnesium Alloys for Biomedical Applications. Metals 10(10):1328. https://doi.org/10.3390/met10101328

  7. Yang Y, He C, Dianyu E, Yang W, Qi F, Xie D, Shen L, Peng S, Shuai C (2020) Mg bone implant: Features, developments and perspectives. Mater. Des 185:108259. https://doi.org/10.1016/j.matdes.2019.108259

    Article  CAS  Google Scholar 

  8. Zamani Y, Ghazanfari H, Erabi G, Moghanian A, Fakic B, Hosseini SM, Mohammad BP (2021) A review of additive manufacturing of Mg-based alloys and composite implants. JCC 2(5):71–83. https://doi.org/10.52547/jcc.3.1.7

  9. Kuah KX, Blackwood DJ, Ong WK, Salehi M, Seet HL, Nai MLS, Wijesinghe S (2022) Analysis of the corrosion performance of binder jet additive manufactured magnesium alloys for biomedical applications. JMA 10:1296–1310. https://doi.org/10.1016/j.jma.2021.11.016

    Article  CAS  Google Scholar 

  10. Zeng Z, Salehi M, Kopp A, Xu S, Esmaily M, Birbilis N (2022) Recent progress and perspectives in additive manufacturing of magnesium alloys. JMA 10(6):1511–1541. https://doi.org/10.1016/j.jma.2022.03.001

    Article  CAS  Google Scholar 

  11. Allavikutty R, Gupta P, Santra TS, Rengaswamy J (2021) Additive manufacturing of Mg alloys for biomedical applications: Current status and challenges. Curr. Opin. Biomed 18:100276. https://doi.org/10.1016/j.cobme.2021.100276

    Article  CAS  Google Scholar 

  12. Karunakaran R, Ortgies S, Tamayol A, Bobaru F, Sealy MP (2020) Additive manufacturing of magnesium alloys. Bioact. Mater. 5(1):44–54. https://doi.org/10.1016/j.bioactmat.2019.12.004

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu S, Yang W, Shi X, Li Bin, Duan S, Guo H, Guo J (2019) Influence of laser process parameters on the densification, microstructure, and mechanical properties of a selective laser melted AZ61 magnesium alloy. J. Alloy Compd. 808:151160. https://doi.org/10.1016/j.jallcom.2019.06.261

  14. Niu X, Shen H, Fu J, Yan J, Wang Y (2019) Corrosion behaviour of laser powder bed fused bulk pure magnesium in hank’s solution. Corros. Sci. 157:284–294, https://doi.org/10.1016/j.corsci.2019.05.026

    Article  CAS  Google Scholar 

  15. Wei K, Zeng X, Wang Z, Deng J, Liu M, Huang G, Yuan X (2019) Selective laser melting of Mg-Zn binary alloys: Effects of Zn content on densification behavior, microstructure, and mechanical property. Mater. Sci. Eng. 756:226–236. https://doi.org/10.1016/j.msea.2019.04.067

    Article  CAS  Google Scholar 

  16. Xu, R, Zhao MG, Zhao YC, Liu L, Liu C, Gao C, Shuai C, Atrens A (2019) Improved biodegradation resistance by grain refinement of novel antibacterial ZK30-Cu alloys produced via selective laser melting. Mater. Lette. 237:253–257. https://doi.org/10.1016/j.matlet.2018.11.071

    Article  CAS  Google Scholar 

  17. Zumdick NA, Jauer L, Kersting LC, Kutz TN, Schleifenbaum JH, Zander D (2019) Additive manufactured WE43 magnesium: A comparative study of the microstructure and mechanical properties with those of powder extruded and as-cast WE43. Mater. Charact. 147:384–397. https://doi.org/10.1016/j.matchar.2018.11.011

    Article  CAS  Google Scholar 

  18. Li Y, Zhou J, Pavanram P, Leeflang MA, Fockaert LI, Pouran B, Tumer N, Schroder KU, Mol JM, Weinans H, Jahr H, Zadpoor AA (2018) Additively manufactured biodegradable porous magnesium. Acta Biomater 67:378–392. https://doi.org/10.1016/j.actbio.2017.12.008

    Article  CAS  PubMed  Google Scholar 

  19. Somasundaram M, Uttamchand NK, Annamalai AR, Jen CP (2022) Insights on Spark Plasma Sintering of Magnesium Composites: A Review. J. Nanomater. 12(13):2178. https://doi.org/10.3390/nano12132178

    Article  CAS  Google Scholar 

  20. Rotem R, Aghion E (2016) Innovative approach to protect magnesium powder during sintering. IJMR 107(6):553–557. https://doi.org/10.3139/146.111373

    Article  CAS  Google Scholar 

  21. Wolff M, Ebel T, Dahms (2010) Sintering of Magnesium. Adv. Eng. Mater. 12(9):829–836. https://doi.org/10.1002/adem.201000038

    Article  CAS  Google Scholar 

  22. Burke P, Kipouros Gj, Fancelli D, Laverdiere V (2013) Sintering Fundamentals of Magnesium Powders. Can. Metall. Q. 48(2):123–132. https://doi.org/10.1179/cmq.2009.48.2.123

    Article  Google Scholar 

  23. Salehi M, Maleksaeedi S, Nai SML, Meenashisundaram GK, Goh MH, Gupta M (2019) A paradigm shift towards compositionally zero-sum binderless 3D printing of magnesium alloys via capillary-mediated bridging. Acta Mater. 165:294–306. https://doi.org/10.1016/j.actamat.2018.11.061

    Article  CAS  Google Scholar 

  24. German RM, Suri P, Park SJ (2009) Review: liquid phase sintering. J. Mater. Sci. 44(1):1–39. https://doi.org/10.1007/s10853-008-3008-0

    Article  CAS  Google Scholar 

  25. Johnson JL, German RM (1996) Solid-state contributions to densification during liquid-phase sintering. Metall. Mater. Trans. B. 27(6):901–909. https://doi.org/10.1007/s11663-996-0003-1

    Article  Google Scholar 

  26. Mora CF, Kwan AKH (2020) Sphericity, shape factor, and convexity measurement of coarse aggregate for concrete using digital image processing. Cem. Concr. Res. 30(3):351–358. https://doi.org/10.1016/S0008-8846(99)00259-8

    Article  Google Scholar 

  27. Salehi M, Seet HL, Gupta M, Farnoush H, Maleksaeedi S, Nai MLS (2020) Rapid densification of additive manufactured magnesium alloys via microwave sintering. Addit. Manuf. 37:101655. https://doi.org/10.1016/j.addma.2020.101655

    Article  CAS  Google Scholar 

  28. Celikin M et al. (2023) Development of Magnesium-Strontium/Calcium (Mg-Sr/Ca)-Based Alloys with Improved Sinterability for Next-Generation Biomedical Implants. Paper presented at the 152nd TMS Annual Meeting, San Diego, California, 19–23 March 2023

    Google Scholar 

Download references

Acknowledgements

Authors acknowledge the EU financial support received under Marie-Sklodowska Curie Fellowship (AMBIT 101029651). This publication has also emanated from research conducted with the financial support of Science Foundation Ireland under grant number 20/FFP-P/8868. For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. Authors also thank South Eastern Applied Materials (SEAM) Research Centre for their support in conducting laser diffraction experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ava Azadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Azadi, A., O’Cearbhaill, E.D., Celikin, M. (2024). The Effect of Powder Size and Morphology on the Sinterability of Bioresorbable Mg-Sr/Ca Alloys. In: Leonard, A., Barela, S., Neelameggham, N.R., Miller, V.M., Tolnai, D. (eds) Magnesium Technology 2024. TMS 2024. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-50240-8_39

Download citation

Publish with us

Policies and ethics