Skip to main content

Severe Plastically Deformed Mg–Zn–Zr–RE Alloy Developed as a Biomaterial

  • Conference paper
  • First Online:
Magnesium Technology 2024 (TMS 2024)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 545 Accesses

Abstract

Mg alloys have high corrosion rate that inhibits their application as biomaterial. For safe use as biomaterial, it is essential to control their corrosion rates. In Mg alloys, microgalvanic coupling between the α-Mg matrix and secondary precipitates can exist which results in increased corrosion rate. To address this challenge, we engineered the microstructure of a biodegradable Mg–Zn–RE–Zr alloy by severe plastic deformation process such as friction stir processing (FSP), improving its corrosion resistance and mechanical properties simultaneously. Subjecting the alloy to FSP resulted in refined grains, basal texture and broken and uniformly distributed secondary precipitates. In vitro corrosion of base material showed microgalvanic coupling between precipitate and matrix, resulting in unstable surface layer. The processed alloy showed uniform corrosion owing to formation of stable surface film formation, due to the refined grains, texture, and distribution of precipitates. The results show promising potential of Mg alloy as biomaterial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Witte, J. Fischer, J. Nellesen, H.A. Crostack, V. Kaese, A. Pisch, F. Beckmann, H. Windhagen, In vitro and in vivo corrosion measurements of magnesium alloys, Biomaterials. 27 (2006) 1013–1018. https://doi.org/10.1016/j.biomaterials.2005.07.037.

    Article  CAS  PubMed  Google Scholar 

  2. P. Trumbo, S. Schlicker, A.A. Yates, M. Poos, Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids, J. Am. Diet. Assoc. 102 (2002) 1621–1630. https://doi.org/10.1016/S0002-8223(02)90346-9.

  3. A. Hartwig, Role of magnesium in genomic stability, Mutat. Res. Mol. Mech. Mutagen. 475 (2001) 113–121. https://doi.org/10.1016/S0027-5107(01)00074-4.

  4. Y. Chen, Z. Xu, C. Smith, J. Sankar, Recent advances on the development of magnesium alloys for biodegradable implants, Acta Biomater. 10 (2014) 4561–4573. https://doi.org/10.1016/j.actbio.2014.07.005.

  5. M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials. 27 (2006) 1728–1734. https://doi.org/10.1016/j.biomaterials.2005.10.003.

  6. N.-E.L. Saris, E. Mervaala, H. Karppanen, J.A. Khawaja, A. Lewenstam, Magnesium: An update on physiological, clinical and analytical aspects, Clin. Chim. Acta. 294 (2000) 1–26. https://doi.org/10.1016/S0009-8981(99)00258-2.

  7. J. Vormann, Magnesium: nutrition and metabolism, Mol. Aspects Med. 24 (2003) 27–37. https://doi.org/10.1016/S0098-2997(02)00089-4.

  8. K.F. Farraro, K.E. Kim, S.L.-Y. Woo, J.R. Flowers, M.B. McCullough, Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering, J. Biomech. 47 (2014) 1979–1986. https://doi.org/10.1016/j.jbiomech.2013.12.003.

  9. T. Ren, X. Gao, C. Xu, L. Yang, P. Guo, H. Liu, Y. Chen, W. Sun, Z. Song, Evaluation of as-extruded ternary Zn–Mg–Zr alloys for biomedical implantation material: In vitro and in vivo behavior, Mater. Corros. 70 (2019) 1056–1070. https://doi.org/10.1002/maco.201810648.

    Article  CAS  Google Scholar 

  10. G.L. Song, A. Atrens, Corrosion mechanisms of magnesium alloys, Adv. Eng. Mater. 1 (1999) 11–33.

    Article  CAS  Google Scholar 

  11. M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions - Translated from the French by JAMES A. FRANKLIN (except Sections I, III 5 and III 6, which were originally written in English), Second Edi, Houston, TX, 1974.

    Google Scholar 

  12. T.R. Thomaz, C.R. Weber, T. Pelegrini, L.F.P. Dick, G. Knörnschild, The negative difference effect of magnesium and of the AZ91 alloy in chloride and stannate-containing solutions, Corros. Sci. 52 (2010) 2235–2243. https://doi.org/10.1016/j.corsci.2010.03.010.

  13. S. Bender, J. Goellner, A. Heyn, S. Schmigalla, A new theory for the negative difference effect in magnesium corrosion, Mater. Corros. 63 (2012) 707–712. https://doi.org/10.1002/maco.201106225.

    Article  CAS  Google Scholar 

  14. S.S. Patil, R.D.K. Misra, M. Gao, Z. Ma, L. Tan, K. Yang, Bioactive coating on a new Mg-2Zn-0.5Nd alloy: modulation of degradation rate and cellular response, Mater. Technol. 34 (2019) 394–402. https://doi.org/10.1080/10667857.2019.1574956.

  15. Y. Yang, C. He, Dianyu E, W. Yang, F. Qi, D. Xie, L. Shen, S. Peng, C. Shuai, Mg bone implant: Features, developments and perspectives, Mater. Des. 185 (2020) 108259. https://doi.org/10.1016/j.matdes.2019.108259.

  16. Y. Ding, C. Wen, P. Hodgson, Y. Li, Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review, J. Mater. Chem. B. 2 (2014) 1912–1933. https://doi.org/10.1039/C3TB21746A.

    Article  CAS  PubMed  Google Scholar 

  17. S. Tekumalla, S. Seetharaman, A. Almajid, M. Gupta, H.F. Lopez, Mechanical Properties of Magnesium-Rare Earth Alloy Systems: A Review, Metals (Basel). 5 (2015) 1–39. https://doi.org/10.3390/met5010001.

    Article  Google Scholar 

  18. W.C. Neil, M. Forsyth, P.C. Howlett, C.R. Hutchinson, B.R.W. Hinton, Corrosion of magnesium alloy ZE41 - The role of microstructural features, Corros. Sci. 51 (2009) 387–394. https://doi.org/10.1016/j.corsci.2008.11.005.

    Article  CAS  Google Scholar 

  19. A. Marwa, C.A. Usman, V.C. Shunmugasamy, I. Karaman, B. Mansoor, Corrosion behavior of Mg-Zn-Zr-RE alloys under physiological environment – impact on mechanical integrity and biocompatibility, J. Magnes. Alloy. 10 (2022) 1542–1572.

    Article  Google Scholar 

  20. V.C. Shunmugasamy, M. AbdelGawad, M.U. Sohail, T. Ibrahim, T. Khan, T.D. Seers, B. Mansoor, In vitro and in vivo study on fine-grained Mg–Zn–RE–Zr alloy as a biodegradeable orthopedic implant produced by friction stir processing, Bioact. Mater. 28 (2023) 448–466. https://doi.org/10.1016/j.bioactmat.2023.06.010.

  21. A. Marwa, U. Ali, B. Mansoor, I. Karaman, In vitro corrosion and mechanical integrity of two different rare earth metals containing magnesium alloys, To Be Submitt. (2020).

    Google Scholar 

  22. A. Dorbane, B. Mansoor, G. Ayoub, V.C. Shunmugasamy, A. Imad, Mechanical, microstructural and fracture properties of dissimilar welds produced by friction stir welding of AZ31B and Al6061, Mater. Sci. Eng. A. 651 (2016) 720–733.

    Article  CAS  Google Scholar 

  23. M. AbdelGawad, A.U. Chaudhry, B. Mansoor, The influence of temperature and medium on corrosion response of ZE41 and EZ33, in: V. V Joshi, J.B. Jordon, D. Orlov, N.R. Neelameggham (Eds.), Magnes. Technol. 2019, TMS - Miner. Met. Mater. Ser., Springer International Publishing, Cham, 2019: pp. 159–167.

    Google Scholar 

  24. NACE/ASTM G31-12a: Standard guide for laboratory immersion corrosion testing of metals, West Conshohocken, PA; ASTM International, 2012. https://doi.org/10.1520/NACEASTMG0031-12A, (n.d.).

  25. Y. Luo, Y. Deng, L. Guan, L. Ye, X. Guo, A. Luo, Effect of grain size and crystal orientation on the corrosion behavior of as-extruded Mg-6Gd-2Y-0.2Zr alloy, Corros. Sci. 164 (2020) 108338. https://doi.org/10.1016/j.corsci.2019.108338.

  26. S. Pawar, T.J.A. Slater, T.L. Burnett, X. Zhou, G.M. Scamans, Z. Fan, G.E. Thompson, P.J. Withers, Crystallographic effects on the corrosion of twin roll cast AZ31 Mg alloy sheet, Acta Mater. 133 (2017) 90–99. https://doi.org/10.1016/j.actamat.2017.05.027.

  27. A. Atrens, G.-L. Song, M. Liu, Z. Shi, F. Cao, M.S. Dargusch, Review of recent developments in the field of magnesium corrosion, Adv. Eng. Mater. 17 (2015) 400–453. https://doi.org/10.1002/adem.201400434.

    Article  CAS  Google Scholar 

  28. R. Xin, Y. Luo, A. Zuo, J. Gao, Q. Liu, Texture effect on corrosion behavior of AZ31 Mg alloy in simulated physiological environment, Mater. Lett. 72 (2012) 1–4. https://doi.org/10.1016/j.matlet.2011.11.032.

  29. K. Hagihara, M. Okubo, M. Yamasaki, T. Nakano, Crystal-orientation-dependent corrosion behaviour of single crystals of a pure Mg and Mg-Al and Mg-Cu solid solutions, Corros. Sci. 109 (2016) 68–85. https://doi.org/10.1016/j.corsci.2016.03.019.

Download references

Acknowledgements

This publication was made possible by the grant NPRP No.: 8-856-2-364 from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasanth C. Shunmugasamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shunmugasamy, V.C., Mansoor, B. (2024). Severe Plastically Deformed Mg–Zn–Zr–RE Alloy Developed as a Biomaterial. In: Leonard, A., Barela, S., Neelameggham, N.R., Miller, V.M., Tolnai, D. (eds) Magnesium Technology 2024. TMS 2024. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-50240-8_38

Download citation

Publish with us

Policies and ethics