Skip to main content

Design and Assembly of Efficient Component-Based Off-Earth Infrastructure: From Vernacular to Contemporary Form-Finding Methods

  • Chapter
  • First Online:
Adaptive On- and Off-Earth Environments

Part of the book series: Springer Series in Adaptive Environments ((SPSADENV))

  • 82 Accesses

Abstract

Off-Earth infrastructure has fascinated humanity for decades. This gave rise to a wealth of research and development in relation to structures and systems that can support life outside our planet. Currently, efforts for sustained human presence on our moon and Mars are resurging. Therefore, it is timely to reflect on challenges and opportunities posed by current thinking relating to off-Earth design. Specifically, this chapter focuses on large-scale infrastructure such as habitat shields and discusses their adaptability and reconfigurability. It is suggested that the extra-terrestrial setting—characterized by stringent constraints in resources, construction methods, and labour—relates to an extreme case of the on-Earth built environment. Consequently, it is proposed that vernacular methods of construction and contemporary form-finding method can benefit the off-Earth context, through their inherent material efficiency and use of local materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this context, progress has been made in relation extra-terrestrial methods of assembly; for instance the reader is pointed to the Rhizome project (http://cs.roboticbuilding.eu/index.php/Shared:RhizomeReview5).

References

  • Adriaenssens S, Block P, Veenendaal D, Williams C (eds) (2014) Shell structures for architecture: form finding and optimization. Routledge

    Google Scholar 

  • Allen E (1984) Pietre di Puglia: dolmen, trulli e insediamenti rupestri. Adda, Bari

    Google Scholar 

  • Baker WF, Beghini L, Mazurek A, Carrion J, Beghini A (2015) Structural innovation: combining classic theories with new technologies. Eng-J 52:203–218

    Article  Google Scholar 

  • Bimbraw K (2015) Autonomous cars: past, present and future: a review of the developments in the last century, the present scenario and the expected future of autonomous vehicle technology. In: ICINCO 2015—12th international conference on informatics in control, automation and robotics, vol 1, pp 191–98. SciTePress. https://doi.org/10.5220/0005540501910198

  • Block P, Ochsendorf J (2007) Thrust network analysis: a new methodology for three-dimensional equilibrium. J Int Assoc Shell Spat Struct 48

    Google Scholar 

  • Brocato M, Mondardini L (2015) Parametric analysis of structures from flat vaults to reciprocal grids. Int J Solids Struct 54:50–65. https://doi.org/10.1016/J.IJSOLSTR.2014.11.007

    Article  Google Scholar 

  • Brütting J, De Wolf C, Fivet C (2019) The reuse of load-bearing components. IOP Conf Ser Earth Environ Sci 225:012025. https://doi.org/10.1088/1755-1315/225/1/012025

    Article  Google Scholar 

  • Cárdenas-Haro X, Todisco L, León J (2021) Database with compression and bending tests on unbaked earth specimens and comparisons with international code provisions. Constr Build Mater 276:122232. https://doi.org/10.1016/J.CONBUILDMAT.2020.122232

    Article  Google Scholar 

  • Cavanagh WG, Laxton RR (1981) The structural mechanics of the Mycenaean Tholos Tombs. Annu Brit Sch Athens 76:109–140

    Article  Google Scholar 

  • Cesaretti G, Dini E, De Kestelier X, Colla V, Pambaguian L (2014) Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronaut 93:430–450

    Article  Google Scholar 

  • Chiu (2010) An introduction to the history of project management. From the earliest times to A.D.1900. Uitgeverij Eburon, Delft

    Google Scholar 

  • Como MT (2006) Analysis of the statics of mycenaean Tholoi. In: Dunkeld M, Louw H, Tutton M, Addis B, Powell C, Thorne RJC (ed) Proceedings of the second international congress on construction history. Exeter, Cambridge, pp 777–790

    Google Scholar 

  • Como MT (2007) L’architettura delle “Tholoi” micenee : aspetti costruttivi e statici. Università degli studi Suor Orsola Benincasa, Napoli

    Google Scholar 

  • D’Acunto P, Jasienski JP, Ohlbrock PO, Fivet C, Schwartz J, Zastavni D (2019) Vector-based 3D graphic statics: a framework for the design of spatial structures based on the relation between form and forces. Int J Solids Struct 167:58–70. https://doi.org/10.1016/j.ijsolstr.2019.02.008

    Article  Google Scholar 

  • Day AS (1965) An introduction to dynamic relaxation. Engineer 219:218–221

    Google Scholar 

  • De Wolf C, Hoxha E, Fivet C (2020) Comparison of environmental assessment methods when reusing building components: a case study. Sustain Cities Soc 61:102322. https://doi.org/10.1016/j.scs.2020.102322

    Article  Google Scholar 

  • Dyskin AV, Estrin Y, Pasternak E, Khor HC, Kanel-Belov AJ (2005) The principle of topological interlocking in extraterrestrial construction. Acta Astronaut 57:10–21. https://doi.org/10.1016/j.actaastro.2004.12.005

    Article  Google Scholar 

  • Etlin R, Fallacara G, Tamborero L (2008) Plaited stereotomy—stone vaults for the modern world. Aracne, Roma

    Google Scholar 

  • Fantin M, Ciblac T, Brocato M (2018) Resistance of flat vaults taking their stereotomy into account. J Mech Mater Struct 13:657–677. https://doi.org/10.2140/JOMMS.2018.13.657

    Article  MathSciNet  Google Scholar 

  • Fitchen J (1981) The construction of gothic cathedrals. The University of Chicago Press, Chicago

    Google Scholar 

  • Frezier A (1738) La théorie et la pratique de la coupe des pierres et des bois, pour la construction des voûtes et autres parties des bâtiments civils et militaires, ou Traité de stéréotomie à l’usage de l’architecture. Doulsseker le fils, Strasbourg

    Google Scholar 

  • Hadrian X Breaks New Lay Speed Record (2022) https://www.youtube.com/watch?v=AqQcqqLN_Fg&ab_channel=FBR

  • Heizer RF, Stross F, Hester TR, Albee A, Perlman I, Asaro F, Bowman H (1973) The colossi of memnon revisited. New Series 182

    Google Scholar 

  • Heyman J (1995) The stone skeleton. Cambridge University Press

    Book  Google Scholar 

  • Heyman J (2008) Basic structural theory. Cambridge University Press

    Book  Google Scholar 

  • Howe SA, Wilcox BH, McQuin C, Townsend J, Rieber RR, Barmatz M, Leichty J (2013) Faxing structures to the moon: freeform additive construction system (FACS). In: AIAA SPACE 2013 conference and exposition, p 5437

    Google Scholar 

  • Imhof B, Urbina D, Weiss P, Sperl M, Hoheneder W, Waclavicek R, Madakashira HK, Salini J, Govindaraj S, Gancet J, Mohamed MP, Gobert T, Fateri M, Meurisse A, Lopez O, Preisinger C (2017) Advancing solar sintering for building a base on the moon. In: 69th International astronautical congress (IAC), Adelaide, Australia

    Google Scholar 

  • Inocente D, Koop C, Petrov GI, Hoffman JA, Sumini V, Makaya A, Arnhof M, Lakk H, Lamaze B, Cowley A, Binns D, Landgraf M, Messina P, Haingeré C (2019) Master planning and space architecture for a moon village. In: 70th International astronautical congress (IAC), Washington, D.C., USA

    Google Scholar 

  • Juricic B, Brucker MG, Marenjak S (2021) Review of the construction labour demand and shortages in the EU. Buildings. MDPI AG. https://doi.org/10.3390/buildings11010017

  • Juvanec B (2001) Six thousand years, and more, of corbelling, age of stone shelters. In: Proceedings of UNESCO/ICOMOS congress I. UNESCO/ICOMOS, Paris

    Google Scholar 

  • Juvanec B (2022) Stone shelter. http://www.stoneshelter.org/. Accessed 5 Jan 2022

  • Kalapodis N, Kampas G, Ktenidou OJ (2020) A review towards the design of extraterrestrial structures: from regolith to human outposts. Acta Astronaut 175:540–569. https://doi.org/10.1016/j.actaastro.2020.05.038

    Article  Google Scholar 

  • Konstantatou M, Dall’Igna M, Dierckx J, Wilkinson S, Gallou I (2021) Learning lessons from Earth and space towards sustainable multi-planetary design. Spool 8(2):39–54. https://doi.org/10.7480/spool.2021.2.5431

  • Konstantatou M, D’Acunto P, McRobie A (2018) Polarities in structural analysis and design: n-dimensional graphic statics and structural transformations. Int J Solids Struct 152–153:272–293. https://doi.org/10.1016/j.ijsolstr.2018.07.003

    Article  Google Scholar 

  • Konstantatou M, Baker W, Nugent T, McRobie A (2022a) Grid-shell design and analysis via reciprocal discrete Airy stress functions. Int J Space Struct 37(2):150–164. https://doi.org/10.1177/09560599221081004

    Article  Google Scholar 

  • Konstantatou M, Navarro Perez S C, Piker D, Dall’Igna M, Gallou I (2022b). Off-Earth infrastructure assembly: a conceptual method for scaffoldless and mortarless component-based structures in static equilibrium. Int J Space Struct 37(3): 196–210. https://doi.org/10.1177/09560599221120032

  • Konstantatou M, Navarro Perez S C, Gallou I, Punch O, Guberman M, Dobbin B, Goodloe D, Loftus D J, Lesh A, Lepech M (2023) Modular outfitting systems for lunar habitation. Paper presented SpaceChi 3.0 conference, Boston

    Google Scholar 

  • Kurazume R, Souichiro O, Shingo N, Yongjin J, Iwashita Y (2017) Automatic large-scale three dimensional modeling using cooperative multiple robots. Comput vis Image Underst 157:25–42. https://doi.org/10.1016/j.cviu.2016.05.008

    Article  Google Scholar 

  • Landels JG (2000) Engineering in the ancient world, 2nd edn. University of California press, Berkeley

    Google Scholar 

  • Lázaro Guijarro I (2017) Estudio del comportamiento estructural de la bóveda plana en la “Casa de Mina de Limpia” (Pontón de la Oliva). Universidad Politécnica de Madrid

    Google Scholar 

  • Liddell I (2015) Frei Otto and the development of gridshells. Case Stud Struct Eng 4:39–49. https://doi.org/10.1016/j.csse.2015.08.001

    Article  Google Scholar 

  • Löbbecke R (2012) Corbelled domes. Verlag der Buchhandlung Walther König, Köln

    Google Scholar 

  • Loing V, Baverel O, Caron JF, Mesnil R (2020) Free-form structures from topologically interlocking masonries. Autom Constr 113:103117. https://doi.org/10.1016/j.autcon.2020.103117

    Article  Google Scholar 

  • López López D (2020) Tile vaults as integrated formwork for concrete shells. ETH Zurich

    Google Scholar 

  • Manos P, Mehrotra A, Konstantatou M (2023) Stability of scaffoldless dry stone vaults under microgravity and seismic loading. In: Proceedings of Italian workshop on shell and spatial structures, Turin

    Google Scholar 

  • Mars Ice House (2016) http://www.spacexarch.com/mars-ice-house

  • MARSHA Architecture on Mars (2018) https://www.aispacefactory.com/marsha

  • McKinsey the construction productivity imperative (2015) https://www.mckinsey.com/business-functions/operations/our-insights/the-construction-productivity-imperative

  • McRobie A, Baker W, Mitchell T, Konstantatou M (2016) Mechanisms and states of self-stress of planar trusses using graphic statics, part II: Applications and extensions. Int J Space Struct 31:102–111

    Article  Google Scholar 

  • Mitchell T, Baker W, McRobie A, Mazurek A (2016) Mechanisms and states of self-stress of planar trusses using graphic statics, part I: The fundamental theorem of linear algebra and the Airy stress function. Int J Space Struct 31(2–4):85–101

    Article  Google Scholar 

  • Moon Village (2019) https://www.som.com/news/som_releases_concept_for_moon_village_the_first_permanent_human_settlement_on_the_lunar_surface

  • Mueller R, Howe S, Kochmann D, Ali H, Andersen C, Burgoyne H, Chambers W, Clinton R, De Kestellier X, Ebelt K, Gerner S (2016) Automated additive construction (AAC) for Earth and space using in-situ resources. Proceedings of earth & space 2016. American Society of Civil Engineers

    Google Scholar 

  • NASA 3D Printed Habitat Challenge (2018) https://www.hassellstudio.com/project/nasa-3d-printed-habitat-challenge

  • NASA, BIG, SEArch+, and ICON team up to develop a lunar city (2020) The architect’s newspaper. https://www.archpaper.com/2020/10/nasa-big-search-icon-project-olympus/

  • Ochsendorf J (2010) Guastavino vaulting: the art of structural tile. Princeton Architectural Press, New York

    Google Scholar 

  • Oliver P (1997) Encyclopedia of vernacular architecture of the world. Cambridge University Press

    Google Scholar 

  • Owens A, DeWeck O (2016) Systems analysis of in-space manufacturing applications for international space station in support of the evolvable mars campaign. In: Proceedings of the American institute of aeronautics and astronautics SPACE forum, Long Beach, CA

    Google Scholar 

  • Owens A, DeWeck O, Stromgren C, Goodliff KE, Cirillo W (2017) Supportability challenges, metrics, and key decisions for human spaceflight. In: Proceedings of the American institute of aeronautics and astronautics (AIAA) SPACE forum, Orlando, FL

    Google Scholar 

  • Parascho S, Xi Han I, Samantha W, Alessandro B, Bruun EPG, Adriaenssens S (2020b) Robotic vault: a cooperative robotic assembly method for brick vault construction. Constr Robot 4(3–4):117–126. https://doi.org/10.1007/s41693-020-00041-w

    Article  Google Scholar 

  • Parascho S, Xi Han I, Samantha W, Alessandro B, Bruun EPG, Adriaenssens S (2020a) Robotic vault: a cooperative robotic assembly method for brick vault construction. Constr Robot 4. https://doi.org/10.1007/s41693-020-00041-w

  • Paris V, Pizzigoni A, Adriaenssens S (2020) Statics of self-balancing masonry domes constructed with a cross-herringbone spiraling pattern. Eng Struct 215:110440. https://doi.org/10.1016/J.ENGSTRUCT.2020.110440

    Article  Google Scholar 

  • Poleni G (1748) Memorie Istoriche della Gran Cupola del Tempio Vaticano. Stamperia del Seminario di Padova

    Google Scholar 

  • Ramage M, Ochsendorf J, Rich P (2009) Sustainable shells: New African vaults built with soil-cement tiles. In: Proceedings of the international association for shell and spatial structures (IASS) Symposium, Valencia, Spain

    Google Scholar 

  • Rippmann M, Lachauer L, Block P (2012) Interactive vault design. Int J Space Struct 27(4):219–230. https://doi.org/10.1260/0266-3511.27.4.219

    Article  Google Scholar 

  • Schek HJ (1974) The force density method for form finding and computation of general networks. Comput Methods Appl Mech Eng 3(1):115–134. https://doi.org/10.1016/0045-7825(74)90045-0

    Article  MathSciNet  Google Scholar 

  • Thoma A, Adel A, Helmreich M, Wehrle T, Gramazio F, Kohler M (2019) Robotic fabrication of bespoke timber frame modules. In Robotic fabrication in architecture, art and design 2018. Springer International Publishing, pp 447–58. https://doi.org/10.1007/978-3-319-92294-2_34

  • Todisco L, Sanitate G (2016) Static stability of trulli. Mater Struct Constr 49:2893–2905. https://doi.org/10.1617/s11527-015-0693-4

    Article  Google Scholar 

  • Todisco L, Sanitate G, Lacorte G (2017) Geometry and proportions of the traditional trulli of alberobello. Nexus Netw J 19:701–721. https://doi.org/10.1007/s00004-016-0326-4

    Article  Google Scholar 

  • TyBot, The Rebar-Tying Robot (2022) https://www.constructionrobots.com/tybot

  • Wendland D (2004) Free-handed vault construction in the European building tradition: vaulting patterns in half-stone vaults. In: 13th International brick and block masonry conference. Amsterdam

    Google Scholar 

  • Werfel J, Petersen K, Nagpal R (2014) Designing collective behavior in a termite-inspired robot construction team. Science 343:754–758

    Article  Google Scholar 

  • Wilkinson S, Musil J, Dierckx J, Gallou I, de Kestelier X (2016a) Concept design of an outpost for mars using autonomous additive swarm construction. ESA Acta Futura Spec Issue 10:121–129

    Google Scholar 

  • Wilkinson S, Musil J, Dierckx J, Maddock R, Yanga X, Dall’Igna M, Gheorghiu O, De Kestelier X (2016b) Preliminary findings from a multi-robot system for large-scale extra-planetary additive construction. In: 67th International Astronautical Congress (IAC), Guadalajara, Mexico

    Google Scholar 

  • Williams C (2001) The analytic and numerical definition of the geometry of the British Museum Great Court Roof. Maths Des:434–440

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Konstantatou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Konstantatou, M., Todisco, L., Borg, C., Piker, D., Perez, S.C.N., Gallou, I. (2024). Design and Assembly of Efficient Component-Based Off-Earth Infrastructure: From Vernacular to Contemporary Form-Finding Methods. In: Cervone, A., Bier, H., Makaya, A. (eds) Adaptive On- and Off-Earth Environments. Springer Series in Adaptive Environments. Springer, Cham. https://doi.org/10.1007/978-3-031-50081-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50081-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50080-0

  • Online ISBN: 978-3-031-50081-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics