Skip to main content

Nanotechnology-Based Electrochemical Diagnostic Tools for the Detection of Viral Diseases: Advantages and Disadvantages

  • Chapter
  • First Online:
Applications of Nanotechnology in Microbiology

Abstract

Although viruses are very small and simple structures consisting of a protein capsid and a lipidic envelope, they cause many and various diseases such as influenza, ebola, Middle East respiratory syndrome (MERS), acquired immune deficiency syndrome (AIDS), and coronavirus disease 2019 (COVID-19) that can kill thousands of people every year. The high transmission and replication capacity and speed of viruses threaten individuals and public health. Today, COVID-19, which has turned into a global pandemic and continues its effects, is a striking example that reveals viruses’ medical, economic, and socio-cultural impacts. Therefore, the determination of whole or fragmented viruses, or the determination of biomarkers associated with viral diseases, is critical in clinical practice to distinguish and diagnose diseases with similar symptoms. Although established methods (such as enzyme-linked immune sorbent assay and polymerase chain reactions) have been used for a long time for this purpose, they have aspects that are open for development.

The design and development of rapid diagnostic and point-of-care testing (POCT) technologies for disease-causing pathogens are critical to their successful application in the healthcare industry. Although there are various approaches for POCT devices designed to be used in the detection of pathogens, the preferred one is electrochemical biosensors. Electrochemical biosensors have a significant role in the rapid detection of infectious diseases due to their rapid reaction, high sensitivity, selectivity, low cost, and ease of miniaturization. In this chapter, recent developments in electrochemical biosensors based on various electroanalytical techniques such as potentiometry, amperometry, voltammetry, and electrochemical impedance spectroscopy methods will be discussed. In addition, advances in developing an effective biosensor for the diagnosis of viral diseases using appropriate nanomaterials and nanotechnologies will be presented in detail. Additionally, the advantages and disadvantages of POCTs compared to traditional techniques for the detection of biomarkers of viral diseases will be highlighted, and the challenges of commercializing electrochemical sensor devices will be critically discussed in conjunction with future trends such as laboratory-on-a-chip flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee, I., Kim, S. E., Lee, J., Woo, D. H., Lee, S., Pyo, H., et al. (2020). A self-calibrating electrochemical aptasensing platform: Correcting external interference errors for the reliable and stable detection of avian influenza viruses. Biosensors and Bioelectronics, 152, 112010.

    Article  CAS  PubMed  Google Scholar 

  2. Khater, M., de la Escosura-Muñiz, A., Quesada-González, D., & Merkoçi, A. (2019). Electrochemical detection of plant virus using gold nanoparticle-modified electrodes. Analytica Chimica Acta, 1046, 123–131.

    Article  CAS  PubMed  Google Scholar 

  3. Hussein, H. A., Hassan, R. Y. A., El Nashar, R. M., Khalil, S. A., Salem, S. A., & El-Sherbiny, I. M. (2019). Designing and fabrication of new VIP biosensor for the rapid and selective detection of foot-and-mouth disease virus (FMDV). Biosensors and Bioelectronics, 141, 111467.

    Article  CAS  PubMed  Google Scholar 

  4. Siuzdak, K., Niedziałkowski, P., Sobaszek, M., Łęga, T., Sawczak, M., Czaczyk, E., et al. (2019). Biomolecular influenza virus detection based on the electrochemical impedance spectroscopy using the nanocrystalline boron-doped diamond electrodes with covalently bound antibodies. Sensors and Actuators B: Chemical, 280, 263–271.

    Article  CAS  Google Scholar 

  5. Sayhi, M., Ouerghi, O., Belgacem, K., Arbi, M., Tepeli, Y., Ghram, A., et al. (2018). Electrochemical detection of influenza virus H9N2 based on both immunomagnetic extraction and gold catalysis using an immobilization-free screen-printed carbon microelectrode. Biosensors and Bioelectronics, 107, 170–177.

    Article  CAS  PubMed  Google Scholar 

  6. Yang, T., & Duncan, T. V. (2021). Challenges and potential solutions for nanosensors intended for use with foods. Nature Nanotechnology, 16, 251–265.

    Article  CAS  PubMed  Google Scholar 

  7. Kudesia, G., & Wreghitt, T. (2009). Clinical and diagnostic virology. Cambridge University Press.

    Book  Google Scholar 

  8. Murray, P. R., Rosenthal, K. S., & Pfaller, M. A. (2021). Medical microbiology (9th ed., pp. 278–285). Elsevier.

    Google Scholar 

  9. Burrell, C. J., Howard, C. R., & Murphy, F. A. (2016). Fenner and White’s medical virology (5th ed., pp. 1–583). Academic Press.

    Google Scholar 

  10. Hodinka, R. L. (2010). Serologic tests in clinical virology (4th ed., pp. 133–150). Lennette’s Laboratory Diagnosis of Viral Infections.

    Google Scholar 

  11. Kennedy, M. (2005). Methodology in diagnostic virology. Veterinary Clinics of North America: Exotic Animal Practice, 8, 7–26.

    PubMed  Google Scholar 

  12. Pretorius, M., & Venter, M. (2017). Diagnosis of viral infections. In Viral infections in children (Vol. 1, p. 151). Springer.

    Google Scholar 

  13. Al-Hajjar, S. (2012). Laboratory diagnosis of viral disease. In Textbook of clinical pediatrics (pp. 923–928). Springer.

    Chapter  Google Scholar 

  14. Cassedy, A., Parle-McDermott, A., & O’Kennedy, R. (2021). Virus detection: A review of the current and emerging molecular and immunological methods. Frontiers in Molecular Biosciences, 8, 637559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dronina, J., Samukaite-Bubniene, U., & Ramanavicius, A. (2021). Advances and insights in the diagnosis of viral infections. Journal of Nanobiotechnology, 19, 348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Souf, S. (2016). Recent advances in diagnostic testing for viral infections. Bioscience Horizons: The International Journal of Student Research, 9, hzw010.

    Google Scholar 

  17. Sanchez, F., & Sobolev, K. (2010). Nanotechnology in concrete – A review. Construction and Building Materials, 24, 2060–2071.

    Article  Google Scholar 

  18. Ramakrishnan, S. G., Robert, B., Salim, A., Ananthan, P., Sivaramakrishnan, M., Subramaniam, S., et al. (2021). Nanotechnology based solutions to combat zoonotic viruses with special attention to SARS, MERS, and COVID 19: Detection, protection and medication. Microbial Pathogenesis, 159, 105133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, L., & Webster, T. J. (2009). Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today, 4, 66–80.

    Article  CAS  Google Scholar 

  20. Sheikhzadeh, E., Beni, V., & Zourob, M. (2021). Nanomaterial application in bio/sensors for the detection of infectious diseases. Talanta, 230, 122026.

    Article  CAS  PubMed  Google Scholar 

  21. Liu, X., Li, Y., Xu, X., Li, P., Nie, Z., Huang, Y., et al. (2014). Nanomaterial-based tools for protein kinase bioanalysis. TrAC – Trends in Analytical Chemistry, 58, 40–53.

    Article  Google Scholar 

  22. Chandra Ray, P., Afrin Khan, S., Kumar Singh, A., Senapati, D., & Fan, Z. (2012). Nanomaterials for targeted detection and photothermal killing of bacteria. Chemical Society Reviews, 41, 3193–3209.

    Article  Google Scholar 

  23. Sai-Anand, G., Sivanesan, A., Benzigar, M. R., Singh, G., Gopalan, A. I., Baskar, A. V., et al. (2019). Recent progress on the sensing of pathogenic bacteria using advanced nanostructures. Bulletin of the Chemical Society of Japan, 92, 216–244.

    Article  CAS  Google Scholar 

  24. Muniandy, S., Teh, S. J., Thong, K. L., Thiha, A., Dinshaw, I. J., Lai, C. W., et al. (2019). Carbon nanomaterial-based electrochemical biosensors for foodborne bacterial detection. Critical Reviews in Analytical Chemistry, 49, 510–533.

    Article  CAS  PubMed  Google Scholar 

  25. Chen, J., Andler, S. M., Goddard, J. M., Nugen, S. R., & Rotello, V. M. (2017). Integrating recognition elements with nanomaterials for bacteria sensing. Chemical Society Reviews, 46, 1272–1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, R., Belwal, T., Li, L., Lin, X., Xu, Y., & Luo, Z. (2020). Nanomaterial-based biosensors for sensing key foodborne pathogens: Advances from recent decades. Comprehensive Reviews in Food Science and Food Safety, 19, 1465–1487.

    Article  PubMed  Google Scholar 

  27. Fenzl, C., Genslein, C., Domonkos, C., Edwards, K. A., Hirsch, T., & Baeumner, A. J. (2016). Investigating non-specific binding to chemically engineered sensor surfaces using liposomes as models. The Analyst, 141, 5265–5273.

    Article  CAS  PubMed  Google Scholar 

  28. IslamyMazrad, Z. A., In, I., Lee, K. D., & Park, S. Y. (2017). Rapid fluorometric bacteria detection assay and photothermal effect by fluorescent polymer of coated surfaces and aqueous state. Biosensors and Bioelectronics, 89, 1026–1033.

    Article  CAS  Google Scholar 

  29. Bezdekova, J., Zemankova, K., Hutarova, J., Kociova, S., Smerkova, K., Adam, V., et al. (2020). Magnetic molecularly imprinted polymers used for selective isolation and detection of Staphylococcus aureus. Food Chemistry, 321, 126673.

    Article  CAS  PubMed  Google Scholar 

  30. Petaccia, M., Bombelli, C., ParoniSterbini, F., Papi, M., Giansanti, L., Bugli, F., et al. (2017). Liposome-based sensor for the detection of bacteria. Sensors and Actuators, B: Chemical, 248, 247–256.

    Article  CAS  Google Scholar 

  31. Edwards, K. A., & Baeumner, A. J. (2014). Enhancement of heterogeneous assays using fluorescent magnetic liposomes. Analytical Chemistry, 86, 6610–6616.

    Article  CAS  PubMed  Google Scholar 

  32. Vemula, P. K., Wiradharma, N., Ankrum, J. A., Miranda, O. R., John, G., & Karp, J. M. (2013). Prodrugs as self-assembled hydrogels: A new paradigm for biomaterials. Current Opinion in Biotechnology, 24, 1174–1182.

    Article  CAS  PubMed  Google Scholar 

  33. Yang, L., Deng, W., Cheng, C., Tan, Y., Xie, Q., & Yao, S. (2018). Fluorescent immunoassay for the detection of pathogenic bacteria at the single-cell level using carbon dots-encapsulated breakable organosilicananocapsule as labels. ACS Applied Materials and Interfaces, 10, 3441–3448.

    Article  CAS  PubMed  Google Scholar 

  34. Gu, W., Zhang, Q., Zhang, T., Li, Y., Xiang, J., Peng, R., et al. (2016). Hybrid polymeric nano-capsules loaded with gold nanoclusters and indocyanine green for dual-modal imaging and photothermal therapy. Journal of Materials Chemistry B, 4, 910–919.

    Article  CAS  PubMed  Google Scholar 

  35. Amstad, E. (2017). Capsules: Their past and opportunities for their future. ACS Macro Letters, 6, 841–847.

    Article  CAS  Google Scholar 

  36. Norouzi, A., Ravan, H., Mohammadi, A., Hosseinzadeh, E., Norouzi, M., & Fozooni, T. (2018). Aptamer–integrated DNA nanoassembly: A simple and sensitive DNA framework to detect cancer cells. Analytica Chimica Acta, 1017, 26–33.

    Article  CAS  PubMed  Google Scholar 

  37. Setyawati, M. I., Kutty, R. V., Tay, C. Y., Yuan, X., Xie, J., & Leong, D. T. (2014). Novel theranostic DNA nanoscaffolds for the simultaneous detection and killing of escherichia coli and staphylococcus aureus. ACS Applied Materials and Interfaces, 6, 21822–21831.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, H., Ma, X., Liu, Y., Duan, N., Wu, S., Wang, Z., et al. (2015). Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Biosensors and Bioelectronics, 74, 872–877.

    Article  CAS  PubMed  Google Scholar 

  39. Yin, B., Wang, Y., Dong, M., Wu, J., Ran, B., Xie, M., et al. (2016). One-step multiplexed detection of foodborne pathogens: Combining a quantum dot-mediated reverse assaying strategy and magnetic separation. Biosensors and Bioelectronics, 86, 996–1002.

    Article  CAS  PubMed  Google Scholar 

  40. Ge, X., Asiri, A. M., Du, D., Wen, W., Wang, S., & Lin, Y. (2014). Nanomaterial-enhanced paper-based biosensors. TrAC – Trends in Analytical Chemistry, 58, 31–39.

    Article  CAS  Google Scholar 

  41. Munawar, A., Ong, Y., Schirhagl, R., Tahir, M. A., Khan, W. S., & Bajwa, S. Z. (2019). Nanosensors for diagnosis with optical, electric and mechanical transducers. RSC Advances, 9, 6793–6803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu, L., Shoaie, N., Jahanpeyma, F., Zhao, J., Azimzadeh, M., & Al−Jamal, K. T. (2020). Optical, electrochemical and electrical (nano)biosensors for detection of exosomes: A comprehensive overview. Biosensors and Bioelectronics, 161, 112222.

    Article  CAS  PubMed  Google Scholar 

  43. Kaya, H. O., Cetin, A. E., Azimzadeh, M., & Topkaya, S. N. (2021). Pathogen detection with electrochemical biosensors: Advantages, challenges and future perspectives. Journal of Electroanalytical Chemistry, 882, 114989.

    Article  CAS  PubMed  Google Scholar 

  44. Lin, J., Wang, R., Jiao, P., Li, Y., Li, Y., Liao, M., et al. (2015). An impedance immunosensor based on low-cost microelectrodes and specific monoclonal antibodies for rapid detection of avian influenza virus H5N1 in chicken swabs. Biosensors and Bioelectronics, 67, 546–552.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, Q., Li, L., Qiao, Z., Lei, C., Fu, Y., Xie, Q., et al. (2017). Electrochemical conversion of Fe3O4 magnetic nanoparticles to electroactive prussian blue analogues for self-sacrificial label biosensing of avian influenza virus H5N1. Analytical Chemistry, 89, 12145–12151.

    Article  CAS  PubMed  Google Scholar 

  46. Lee, T., Park, S. Y., Jang, H., Kim, G. H., Lee, Y., Park, C., et al. (2019). Fabrication of electrochemical biosensor consisted of multi-functional DNA structure/porous au nanoparticle for avian influenza virus (H5N1) in chicken serum. Materials Science and Engineering C, 99, 511–519.

    Article  CAS  PubMed  Google Scholar 

  47. Haji-Hashemi, H., Norouzi, P., Safarnejad, M. R., & Ganjali, M. R. (2017). Label-free electrochemical immunosensor for direct detection of Citrus tristeza virus using modified gold electrode. Sensors and Actuators, B: Chemical, 244, 211–216.

    Article  CAS  Google Scholar 

  48. Singhal, C., Khanuja, M., Chaudhary, N., Pundir, C. S., & Narang, J. (2018). Detection of chikungunya virus DNA using two-dimensional MoS2 nanosheets based disposable biosensor. Scientific Reports, 8, 1–11.

    Article  CAS  Google Scholar 

  49. Nawaz, M. H., Hayat, A., Catanante, G., Latif, U., & Marty, J. L. (2018). Development of a portable and disposable NS1 based electrochemical immunosensor for early diagnosis of dengue virus. Analytica Chimica Acta, 1026, 1–7.

    Article  CAS  PubMed  Google Scholar 

  50. Manzano, M., Viezzi, S., Mazerat, S., Marks, R. S., & Vidic, J. (2018). Rapid and label-free electrochemical DNA biosensor for detecting hepatitis A virus. Biosensors and Bioelectronics, 100, 89–95.

    Article  CAS  PubMed  Google Scholar 

  51. Srisomwat, C., Yakoh, A., Chuaypen, N., Tangkijvanich, P., Vilaivan, T., & Chailapakul, O. (2021). Amplification-free DNA sensor for the one-step detection of the hepatitis B virus using an automated paper-based lateral flow electrochemical device. Analytical Chemistry, 93, 2879–2887.

    Article  CAS  PubMed  Google Scholar 

  52. Alizadeh, N., Hallaj, R., & Salimi, A. (2017). A highly sensitive electrochemical immunosensor for hepatitis B virus surface antigen detection based on Hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme-signal amplification. Biosensors and Bioelectronics, 94, 184–192.

    Article  CAS  PubMed  Google Scholar 

  53. Zribi, B., Roy, E., Pallandre, A., Chebil, S., Koubaa, M., Mejri, N., et al. (2016). A microfluidic electrochemical biosensor based on multiwall carbon nanotube/ferrocene for genomic DNA detection of Mycobacterium tuberculosis in clinical isolates. Biomicrofluidics, 10, 10.

    Article  Google Scholar 

  54. Ghanbari, K., & Roushani, M. (2018). A nanohybrid probe based on double recognition of an aptamer MIP grafted onto a MWCNTs-Chit nanocomposite for sensing hepatitis C virus core antigen. Sensors and Actuators, B: Chemical, 258, 1066–1071.

    Article  CAS  Google Scholar 

  55. Devarakonda, S., Singh, R., Bhardwaj, J., & Jang, J. (2017). Cost-effective and handmade paper-based immunosensing device for electrochemical detection of influenza virus. Sensors (Switzerland), 17, 2597.

    Article  Google Scholar 

  56. Lum, J., Wang, R., Hargis, B., Tung, S., Bottje, W., Lu, H., et al. (2015). An impedance aptasensor with microfluidic chips for specific detection of H5N1 avian influenza virus. Sensors (Switzerland), 15, 18565–18578.

    Article  CAS  Google Scholar 

  57. Bhardwaj, J., Chaudhary, N., Kim, H., & Jang, J. (2019). Subtyping of influenza A H1N1 virus using a label-free electrochemical biosensor based on the DNA aptamer targeting the stem region of HA protein. Analytica Chimica Acta, 1064, 94–103.

    Article  CAS  PubMed  Google Scholar 

  58. Hou, Y. H., Wang, J. J., Jiang, Y. Z., Lv, C., Xia, L., Hong, S. L., et al. (2018). A colorimetric and electrochemical immunosensor for point-of-care detection of enterovirus 71. Biosensors and Bioelectronics, 99, 186–192. https://doi.org/10.1016/j.bios.2017.07.035

    Article  CAS  PubMed  Google Scholar 

  59. Cheng, D., Zhang, Y., Wen, D., Guo, Z., Yang, H., Liu, Y., et al. (2019). Hairpin probes based click polymerization for label-free electrochemical detection of human T-lymphotropic virus types II. Analytica Chimica Acta, 1059, 86–93.

    Article  CAS  PubMed  Google Scholar 

  60. Bai, C., Lu, Z., Jiang, H., Yang, Z., Liu, X., Ding, H., et al. (2018). Aptamer selection and application in multivalent binding-based electrical impedance detection of inactivated H1N1 virus. Biosensors and Bioelectronics, 110, 162–167.

    Article  PubMed  Google Scholar 

  61. Joshi, S. R., Sharma, A., Kim, G. H., & Jang, J. (2020). Low cost synthesis of reduced graphene oxide using biopolymer for influenza virus sensor. Materials Science and Engineering C, 108, 110465.

    Article  CAS  PubMed  Google Scholar 

  62. Bhardwaj, J., Sharma, A., & Jang, J. (2019). Vertical flow-based paper immunosensor for rapid electrochemical and colorimetric detection of influenza virus using a different pore size sample pad. Biosensors and Bioelectronics, 126, 36–43.

    Article  CAS  PubMed  Google Scholar 

  63. Ravina, M. H., Gill, P. S., & Kumar, A. (2019). Hemagglutinin gene based biosensor for early detection of swine flu (H1N1) infection in human. International Journal of Biological Macromolecules, 130, 720–726.

    Article  CAS  PubMed  Google Scholar 

  64. Nidzworski, D., Siuzdak, K., Niedziałkowski, P., Bogdanowicz, R., Sobaszek, M., Ryl, J., et al. (2017). A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond. Scientific Reports, 7, 1–10.

    Article  CAS  Google Scholar 

  65. Anik, Ü., Tepeli, Y., Sayhi, M., Nsiri, J., & Diouani, M. F. (2018). Towards the electrochemical diagnostic of influenza virus: Development of a graphene-Au hybrid nanocomposite modified influenza virus biosensor based on neuraminidase activity. The Analyst, 143, 150–156.

    Article  CAS  Google Scholar 

  66. Layqah, L. A., & Eissa, S. (2019). An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Microchimica Acta, 186, 2–11.

    Article  Google Scholar 

  67. Mahari, S., Roberts, A., Shahdeo, D., & Gandhi, S. (2020). eCovSens-ultrasensitive novel in-house built printed circuit board based electrochemical device for rapid detection of nCovid-19 antigen, a spike protein domain 1 of SARS-CoV-2. BioRxiv, 2020.04.24.059204.

    Google Scholar 

  68. Vadlamani, B. S., Uppal, T., Verma, S. C., & Misra, M. (2020). Functionalized tio2 nanotube-based electrochemical biosensor for rapid detection of SARS-CoV-2. Sensors (Switzerland), 20, 1–10.

    Article  Google Scholar 

  69. Białobrzeska, W., Firganek, D., Czerkies, M., Lipniacki, T., Skwarecka, M., Dziąbowska, K., et al. (2020). Electrochemical immunosensors based on screen-printed gold and glassy carbon electrodes: Comparison of performance for respiratory syncytial virus detection. Biosensors (Basel), 10, 1–13.

    Google Scholar 

  70. Faria, H. A. M., & Zucolotto, V. (2019). Label-free electrochemical DNA biosensor for Zika virus identification. Biosensors and Bioelectronics, 131, 149–155.

    Article  CAS  PubMed  Google Scholar 

  71. Tancharoen, C., Sukjee, W., Thepparit, C., Jaimipuk, T., Auewarakul, P., Thitithanyanont, A., et al. (2019). Electrochemical biosensor based on surface imprinting for Zika virus detection in serum. ACS Sensors, 4, 69–75.

    Article  CAS  PubMed  Google Scholar 

  72. Hwang, H., Hwang, B. Y., & Bueno, J. (2018). Biomarkers in infectious diseases. Disease Markers, 2018, 2–4.

    Article  Google Scholar 

  73. Chen, H., Hagström, A. E. V., Kim, J., Garvey, G., Paterson, A., Ruiz-Ruiz, F., et al. (2016). Flotation immunoassay: Masking the signal from free reporters in sandwich immunoassays. Scientific Reports, 6, 1–8.

    Google Scholar 

  74. Chen, H., Liu, K., Li, Z., & Wang, P. (2019). Point of care testing for infectious diseases. Clinica Chimica Acta, 493, 138–147.

    Article  CAS  Google Scholar 

  75. Tokel, O., Inci, F., & Demirci, U. (2014). Advances in plasmonic technologies for point of care applications. Chemical Reviews, 114, 5728–5752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, P., & Kricka, L. J. (2018). Current and emerging trends in point-of-care technology and strategies for clinical validation and implementation. Clinical Chemistry, 64, 1439–1452.

    Article  CAS  PubMed  Google Scholar 

  77. Cesewski, E., & Johnson, B. N. (2020). Electrochemical biosensors for pathogen detection. Biosensors and Bioelectronics, 159, 112214.

    Article  CAS  PubMed  Google Scholar 

  78. de Eguilaz, M. R., Cumba, L. R., & Forster, R. J. (2020). Electrochemical detection of viruses and antibodies: A mini review. Electrochemistry Communications, 116, 106762.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhao, Z., Huang, C., Huang, Z., Lin, F., He, Q., Tao, D., et al. (2021). Advancements in electrochemical biosensing for respiratory virus detection: A review. TrAC – Trends in Analytical Chemistry, 139, 116253.

    Article  CAS  PubMed  Google Scholar 

  80. Ozer, T., & Henry, C. S. (2021). Paper-based analytical devices for virus detection: Recent strategies for current and future pandemics. TrAC – Trends in Analytical Chemistry, 144, 116424.

    Article  CAS  PubMed  Google Scholar 

  81. Nelson, P. P., Rath, B. A., Fragkou, P. C., & Antalis, E. (2020). Current and future point-of-care tests for emerging and new respiratory viruses and future perspectives. Frontiers in Cellular and Infection Microbiology, 10, 181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ribeiro, B. V., Cordeiro, T. A. R., Oliveira e Freitas, G. R., Ferreira, L. F., & Franco, D. L. (2020). Biosensors for the detection of respiratory viruses: A review. Talanta Open, 2, 100007.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Tepeli, Y., & Ülkü, A. (2018). Electrochemical biosensors for influenza virus a detection: The potential of adaptation of these devices to POC systems. Sensors and Actuators, B: Chemical, 254, 377–384.

    Article  CAS  Google Scholar 

  84. Goud, K. Y., Reddy, K. K., Khorshed, A., Kumar, V. S., Mishra, R. K., Oraby, M., et al. (2021). Electrochemical diagnostics of infectious viral diseases: Trends and challenges. Biosensors and Bioelectronics, 180, 113112.

    Article  CAS  PubMed  Google Scholar 

  85. Sher, M., Faheem, A., Asghar, W., & Cinti, S. (2021). Nano-engineered screen-printed electrodes: A dynamic tool for detection of viruses. TrAC – Trends in Analytical Chemistry, 143, 116374.

    Article  CAS  PubMed  Google Scholar 

  86. Sengupta, J., Adhikari, A., & Hussain, C. M. (2021). Graphene-based analytical lab-on-chip devices for detection of viruses: A review. Carbon Trends, 4, 100072.

    Article  CAS  Google Scholar 

  87. Brazaca, L. C., dos Santos, P. L., de Oliveira, P. R., Rocha, D. P., Stefano, J. S., Kalinke, C., et al. (2021). Biosensing strategies for the electrochemical detection of viruses and viral diseases – A review. Analytica Chimica Acta, 1159, 338384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pilevar, M., Kim, K. T., & Lee, W. H. (2021). Recent advances in biosensors for detecting viruses in water and wastewater. Journal of Hazardous Materials, 410, 124656.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cetinkaya, A., Kaya, S.I., Kaskatepe, B., Bakirhan, N.K., Ozkan, S.A. (2023). Nanotechnology-Based Electrochemical Diagnostic Tools for the Detection of Viral Diseases: Advantages and Disadvantages. In: Chaughule, R.S., Lokur, A.S. (eds) Applications of Nanotechnology in Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-031-49933-3_14

Download citation

Publish with us

Policies and ethics