Skip to main content

Experimental and Heat Transfer Analysis Using Nanofluid in Cylindrical Heat Pipe Heat Exchanger

  • Conference paper
  • First Online:
2nd International Conference on Smart Sustainable Materials and Technologies (ICSSMT 2023) (ICSSMT 2023)

Part of the book series: Advances in Science, Technology & Innovation ((ASTI))

  • 58 Accesses

Abstract

In waste heat management systems for the utilization of heat, many new techniques are used currently, by taking into account an effective one is heat pipe heat exchanger. Three heat pipes are placed inside the heat exchanger for analyzing the heat transfer performance by using acetone and copper oxide with DI water mixture nanofluid. The influence of nanofluid for various heat input temperature conditions is studied for horizontal and vertical orientation of heat pipe. The study reveals at horizontal orientation the maximum effectiveness is obtained as 66.7% for 100 LPH and Reynolds number ranges as 1173 for similar conditions. The influence of nanofluid as heat transport fluid shows maximum heat transfer capacity for given conditions and this shows good performance in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bao, K., Wang, X., Zhang, P. E., Han, X., & Tan, J. (2023). Evaporating temperature uniformity of the pulsating heat pipe with surfactant solutions at different concentrations. Journal of Thermal Science, 32, 183–191. https://doi.org/10.1007/s11630-022-1756-9

  • Chaudhry, H. N., Hughes, B. R., & Ghani, S. A. (2012). A review of heat pipe systems for heat recovery and renewable energy applications. Renewable and Sustainable Energy Reviews, 16(4), 2249–2259.

    Article  CAS  Google Scholar 

  • Choling, H., & Zou, L. (2015). Study on the heat transfer characteristics of a moderate temperature heat pipe heat exchanger. International Journal of Heat and Mass Transfer, 91, 302–310.

    Google Scholar 

  • Deepak, V., Umamaheshwaran, P. S., Guhan, K., Nanthini, R. A., Krithiga, B., Jaithoon, N. M. H., & Gurunathan, S. (2011). Synthesis of gold and silver nanoparticles using purified URAK. Colloids and Surfaces b: Biointerfaces, 86(2), 353–358.

    Article  CAS  Google Scholar 

  • Holman, J. P. (2007). Experimental methods for engineers (7th ed.) McGraw-Hil, New York.

    Google Scholar 

  • Kamran, M. S., Naz, K., Umer, J., Sajjad, M., Saleem, M. W., Ibrahim, M., & Zeinelabdeen, M. (2021). Experimental evaluation of performance characteristics of a horizontal copper mesh wick-based miniature loop heat pipe. Arabian Journal for Science and Engineering, 46, 2121–2132. https://doi.org/10.1007/s13369-020-05027-y

  • Lu, J., Shen, L., Huang, Q., Sun, D., Li, B., & Tan, Y. (2019). Investigation of a rectangular heat pipe radiator with parallel heat flow structure for cooling high-power IGBT modules. International Journal of Thermal Sciences, 135, 83–93.

    Google Scholar 

  • Ramkumar, P., Sivasubramanian, M., Rajesh Kanna, P., & Raveendiran, P. (2021a). An experimental inquisition of waste heat recovery in electronic component system using concentric tube heat pipe heat exchanger with different working fluids under gravity assistance. Microprocessors and Microsystems, 83, 104033.

    Article  Google Scholar 

  • Ramkumar, P., Sivasubramanian, M., Rajesh Kanna, P., & Raveendiran, P. (2021b). Heat transfer behaviour on influence of an adiabatic section on concentric tube shell assisted heat pipe heat exchanger. International Journal of Ambient Energy, 42(06), 672–681.

    Article  CAS  Google Scholar 

  • Ramkumar, P., Nair, A., Sivasubramanian, M., Buddhi, D., & Prakash, C. (2022). Effectiveness prediction of CuO nanofluid heat pipe system using fuzzy neuro approach. International Journal on Interactive Design and Manufacturing (IJIDeM). https://doi.org/10.1007/s12008-022-01066-x

  • Rudresha, S., Babu, E. R., & Thejaraju, R. (2023). Experimental investigation and influence of filling ratio on heat transfer performance of a pulsating heat pipe. Thermal Science and Engineering Progress, 38, 101649. https://doi.org/10.1016/j.tsep.2023.101649

    Article  CAS  Google Scholar 

  • Sadanand, V., Rajini, N., Satyanarayana, B., & Varada Rajulu, A. (2016). Preparation and properties of cellulose/silver nanoparticle composites with in situ-generated silver nanoparticles using Ocimum sanctum leaf extract. International Journal of Polymer Analysis and Characterization, 21(5), 408–416

    Google Scholar 

  • Siritan, M., Vafai, K., Kammuang-Lue, N., Terdtoon, P., & Sakulchangsatjatai, P. (2022). An innovative design for a solar water heating system utilizing a flat-shaped heat pipe. Journal of Solar Energy Engineering, 145(5), 051002. https://doi.org/10.1115/1.4056624

  • Sonawane, C. R., Tolia, K., Pandey, A., Kulkarni, A., Punchal, H., Sadasivuni, K. K., Kumar, A., & Khalid, M. (2023). Experimental and numerical analysis of heat transfer and fluid flow characteristics inside pulsating heat pipe. Chemical Engineering Communications, 210(4), 549–565. https://doi.org/10.1080/00986445.2021.1974413

  • Tang, H., Xie, Y., Xia, L., Tang, Y., & Sun, Y. (2023). Review on the fabrication of surface functional structures for enhancing heat transfer of heat pipes. Applied Thermal Engineering, 226, 120337. https://doi.org/10.1016/j.applthermaleng.2023.120337

  • Venkatachalapathy, S., Kumaresan, G., & Suresh, S. (2015). Performance analysis of cylindrical heat pipe using nanofluids—an experimental study. International Journal of Multiphase Flow, 72, 188–197.

    Article  CAS  Google Scholar 

  • Wang, H., Tang, Y., Liu, M., Zhu, S., Zheng, K., & Du, X. (2023). Experimental study on heat transfer performance of axially rotating heat pipe in steady state. International Journal of Thermal Sciences, 184, 107975. https://doi.org/10.1016/j.ijthermalsci.2022.107975

  • Washburn, E. W. (1930). International critical tables of numerical data, physics, chemistry and technology. National Research Council, The National Academies Press, Washington DC. https://doi.org/10.17226/20230

  • Xu, H., Yang, Y., Gan, K., Zhang, H., Gao, Y., Li, R., Jiang, Y., Qian, J., Wei, Z., Zheng, Y., & Ding, Q. (2023). Heat transfer performance of novel high temperature flat heat pipe (HTFHP) with heating power and inclination angles. Applied Thermal Engineering, 220, 119679. https://doi.org/10.1016/j.applthermaleng.2022.119679

  • Zeghari, K., Louahlia, H., Tiffonnet, A.-L., & Schaetzel, P. (2023). Micro-grooved circular miniature heat pipe for thermal management: experimental and analytical investigations. Thermal Science and Engineering Progress, 40, 101714. https://doi.org/10.1016/j.tsep.2023.101714

  • Zhang, Z., Zhao, R., Zhao, S., Zou, H., Liu, Z., Luo, X., & Liu, W. (2023). Performance characteristics of a two-phase pump-assisted loop heat pipe with dual-evaporators in parallel. Thermal Science and Engineering Progress, 38, 101657. https://doi.org/10.1016/j.tsep.2023.101657

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ramkumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramkumar, P., Vivek, C.M., Latha, P., Manikandan, S.P. (2024). Experimental and Heat Transfer Analysis Using Nanofluid in Cylindrical Heat Pipe Heat Exchanger. In: Sumesh, M., R. S. Tavares, J.M., Vettivel, S.C., Oliveira, M.O. (eds) 2nd International Conference on Smart Sustainable Materials and Technologies (ICSSMT 2023). ICSSMT 2023. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-031-49826-8_9

Download citation

Publish with us

Policies and ethics