Skip to main content

Lattice Systems

  • Chapter
  • First Online:
Crystallography and Crystal Chemistry
  • 83 Accesses

Abstract

One possible way of categorizing crystals is by the symmetry of their lattice. Where a crystal system is one of seven ways to categorize crystals based on the symmetry of the crystal (cubic, hexagonal, trigonal, tetragonal, orthorhombic, monoclinic, triclinic), a lattice system is one of seven ways to categorize crystals based on the symmetry of their lattice (cubic, hexagonal, rhombohedral, tetragonal, orthorhombic, monoclinic, triclinic).

Nature seems to take advantage of the simple mathematical representations of the symmetry laws. When one pauses to consider the elegance and the beautiful perfection of the mathematical reasoning involved and contrast it with the complex and far-reaching physical consequences, a deep sense of respect for the power of the symmetry laws never fails to develop.

–Chen Ning Yang

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A Hamiltonian is an operator corresponding to the sum of the kinetic energies plus the potential energies for all the particles in a system.

  2. 2.

    \( \left|\boldsymbol{a}\right|=\sqrt{\boldsymbol{a}\bullet \boldsymbol{a}}=\sqrt{a^2\cos (0)}=a \).

  3. 3.

    Note that in a Cartesian axis system, Gij reduces to δij and so r2 = (qx − px)2 + (qy − py)2+ (qz − pz)2.

  4. 4.

    After a brief but intense panic.

Author information

Authors and Affiliations

Authors

Review Questions

Review Questions

  1. 1.

    Define the terms Bravais lattice, lattice system, and crystal system.

  2. 2.

    According to the classification system used in the International Tables for Crystallography, what is the difference between a trigonal crystal and a rhombohedral one? Why is it wrong to define trigonal and rhombohedral crystal systems interchangeably? What crystal systems would exist if crystals were categorized by the symmetry of their lattices rather than the symmetry of the crystal itself?

  3. 3.

    The lattice structure of NaCl is usually described as face-centred cubic. The ionic positions are:

    Na+

    0,0,0

    \( \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right. \),\( \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right. \),0

    \( \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right. \),0,\( \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right. \)

    0,\( \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right. \),\( \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right. \)

    Cl−

    \( \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right. \),0,0

    0, \( \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right. \),0

    0,0,\( \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right. \)

    \( \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right. \),\( \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right. \),\( \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right. \)

    Sketch one unit cell of this structure. How many ions comprise the basis? Annotate your drawing to show these ions.

    A body-centred unit cell can be inscribed within the face-centred one. Sketch this new unit cell within a single face-centred cubic NaCl one and indicate its basis. What is the new Bravais lattice which is formed?

    It is always possible to draw a primitive unit cell of any crystalline structure. Inscribe a primitive NaCl unit cell within a single face-centred cubic one and indicate its basis. What is the Bravais lattice now?

  4. 4.

    Use the metric tensor to calculate the angle between [111] and [123] in an orthorhombic unit cell with lattice constants:

    a = 4 Å, b = 6 Å, c = 11 Å.

  5. 5.

    Use the metric tensor to calculate the angle between [123] and [321] in a monoclinic unit cell with lattice constants:

    a = 1 Å, b = 2 Å, c = 3 Å, β = 95°.

  6. 6.

    Consider the diamond cubic C allotrope with a = 3.56 Å. Atomic positions are at 000, \( \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right. \)0, \( \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right. \)0\( \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right. \), 0\( \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right. \), \( \raisebox{1ex}{$3$}\!\left/ \!\raisebox{-1ex}{$4$}\right.\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$4$}\right.\raisebox{1ex}{$3$}\!\left/ \!\raisebox{-1ex}{$4$}\right. \), \( \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$4$}\right.\raisebox{1ex}{$3$}\!\left/ \!\raisebox{-1ex}{$4$}\right.\raisebox{1ex}{$3$}\!\left/ \!\raisebox{-1ex}{$4$}\right. \), \( \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$4$}\right.\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$4$}\right.\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$4$}\right. \), \( \raisebox{1ex}{$3$}\!\left/ \!\raisebox{-1ex}{$4$}\right.\raisebox{1ex}{$3$}\!\left/ \!\raisebox{-1ex}{$4$}\right.\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$4$}\right. \). Calculate its theoretical density, the C-C bond length, and the C-C-C tetrahedral bond angle.

  7. 7.

    Use the metric tensor to calculate the distance between atoms at 000 and \( \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$3$}\right.\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$4$}\right. \) in a monoclinic unit cell with lattice constants a = 1 Å, b = 2 Å, c = 3 Å, β = 95°.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ubic, R. (2024). Lattice Systems. In: Crystallography and Crystal Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-49752-0_5

Download citation

Publish with us

Policies and ethics