Skip to main content

Nucleic Acid-Protein Interaction Prediction Using Geometric Deep Learning

  • Conference paper
  • First Online:
Supercomputing (RuSCDays 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14389))

Included in the following conference series:

  • 207 Accesses

Abstract

In biology, it remains challenging to predict interactions between proteins and DNA or RNA. When it comes to nucleic acids, existing methods of binding site identification or interaction prediction are inefficient, especially in minor cases, such as aptamer binding. In order to predict NA-protein interactions, we use a deep-learning framework called dMaSIF. Therefore, we modified the atom encoding module to reflect atom positions and relationships more precisely and used parallel calculation to optimize training process. The framework showed effectiveness on two tasks: identifying NA binding sites and predicting NA-protein interactions. This approach can thereby be used to find potential NA binding sites, to perform NA-protein docking and virtual screening, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lawrence, M.C., Colman, P.M.: Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234(4), 946–950 (1993)

    Article  Google Scholar 

  2. McCoy, A.J., Epa, V.C., Colman, P.M.: Electrostatic complementarity at protein/protein interfaces. J. Mol. Biol. 268(2), 570–584 (1997)

    Article  Google Scholar 

  3. Chen, R., Weng, Z.: Docking unbound proteins using shape complementarity, desolvation, and electrostatics. Proteins: Struct. Function Bioinform. 47(3), 281–294 (2002)

    Google Scholar 

  4. Scheck, A., et al.: RosettaSurfA surface-centric computational design approach. PLoS Comput. Biol. 18(3), e1009178 (2022)

    Google Scholar 

  5. Gainza, P., Sverrisson, F., Monti, F., Rodola, E., Boscaini, D., Bronstein, M.M., Correia, B.E.: Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat. Methods 17(2), 184–192 (2020)

    Article  Google Scholar 

  6. Sverrisson, F., Feydy, J., Correia, B.E., Bronstein, M.M.: Fast end-to-end learning on protein surfaces. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15272–15281 (2021)

    Google Scholar 

  7. Ozbek, P., Soner, S., Erman, B., Haliloglu, T.: DNABINDPROT: fluctuation-based predictor of DNA-binding residues within a network of interacting residues. Nucleic Acids Res. 38(suppl_2), W417–W423 (2010)

    Google Scholar 

  8. Qiu, J., et al.: ProNA2020 predicts proteinDNA, proteinRNA, and protein protein binding proteins and residues from sequence. J. Mol. Biol. 432(7), 2428–2443 (2020)

    Google Scholar 

  9. Zhang, F., Zhao, B., Shi, W., Li, M., Kurgan, L.: DeepDISOBind: accurate prediction of RNA-, DNA-and protein-binding intrinsically disordered residues with deep multi-task learning. Briefings Bioinform. 23(1), bbab521 (2022)

    Google Scholar 

  10. Wang, N., Zhang, J., Liu, B.: IDRBP-PPCT: identifying nucleic acid-binding proteins based on position-specific score matrix and position-specific frequency matrix cross transformation. IEEE/ACM Trans. Comput. Biol. Bioinf. 19(4), 2284–2293 (2021)

    Article  Google Scholar 

  11. Nimrod, G., Schushan, M., Szilágyi, A., Leslie, C., Ben-Tal, N.: iDBPs: a web server for the identification of DNA binding proteins. Bioinformatics 26(5), 692–693 (2010)

    Google Scholar 

  12. Chen, Y.C., Wright, J.D., Lim, C.: DR_bind: a web server for predicting DNA-binding residues from the protein structure based on electrostatics, evolution and geometry. Nucleic Acids Res. 40(W1), W249–W256 (2012)

    Google Scholar 

  13. Gao, M., Skolnick, J.: DBD-Hunter: a knowledge-based method for the prediction of DNAprotein interactions. Nucleic Acids Res. 36(12), 3978–3992 (2008)

    Google Scholar 

  14. Nagarajan, R., Ahmad, S., Michael Gromiha, M.: Novel approach for selecting the best predictor for identifying the binding sites in DNA binding proteins. Nucleic Acids Res. 41(16), 7606–7614 (2013)

    Article  Google Scholar 

  15. Tsuchiya, Y., Kinoshita, K., Nakamura, H.: PreDs: a server for predicting dsDNA-binding site on protein molecular surfaces. Bioinformatics 21(8), 1721–1723 (2005)

    Article  Google Scholar 

  16. Chen, R., Li, L., Weng, Z.: ZDOCK: an initial stage protein docking algorithm. Proteins Struct. Funct. Bioinform. 52(1), 80–87 (2003)

    Google Scholar 

  17. Dominguez, C., Boelens, R., Bonvin, A.M.: HADDOCK: a protein protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125(7), 1731–1737 (2003)

    Google Scholar 

  18. Pierce, B., & Weng, Z. (2007). ZRANK: reranking protein docking predictions with an optimized energy function. Proteins: Structure, Function, and Bioinformatics, 67(4), 1078-1086

    Google Scholar 

  19. Keskin, O., Nussinov, R., Gursoy, A.: PRISM: protein-protein interaction prediction by structural matching, pp. 505–521. Methods and Protocols, Functional Proteomics (2008)

    Google Scholar 

  20. Wang, X., Terashi, G., Christoffer, C.W., Zhu, M., Kihara, D.: Protein docking model evaluation by 3D deep convolutional neural networks. Bioinformatics 36(7), 2113–2118 (2020)

    Article  Google Scholar 

  21. Jiang, M., et al.: Drugtarget affinity prediction using graph neural network and contact maps. RSC Adv. 10(35), 20701–20712 (2020)

    Google Scholar 

  22. Wallach, I., Dzamba, M., Heifets, A.: AtomNet: a deep convolutional neural network for bioactivity prediction in structure-based drug discovery. arXiv preprint arXiv:1510.02855 (2015)

  23. Fout, A., Byrd, J., Shariat, B., Ben-Hur, A.: Protein interface prediction using graph convolutional networks. In: Advances in Neural Information Processing Systems, 30 (2017)

    Google Scholar 

  24. Jiménez, J., Doerr, S., Martínez-Rosell, G., Rose, A.S., De Fabritiis, G.: DeepSite: protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics 33(19), 3036–3042 (2017)

    Google Scholar 

  25. Chen, X., et al.: Symbolic discovery of optimization algorithms. arXiv preprint arXiv:2302.06675 (2023)

  26. Kirsanov, D.D., Zanegina, O.N., Aksianov, E.A., Spirin, S.A., Karyagina, A.S., Alexeevski, A.V.: NPIDB: nucleic acidprotein interaction database. Nucleic Acids Res. 41(D1), D517–D523 (2012)

    Google Scholar 

  27. Li, W., Godzik, A.: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13), 1658–1659 (2006)

    Article  Google Scholar 

  28. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, 32 (2019)

    Google Scholar 

  29. Feydy, J., Glaunès, A., Charlier, B., Bronstein, M.: Fast geometric learning with symbolic matrices. Adv. Neural. Inf. Process. Syst. 33, 14448–14462 (2020)

    Google Scholar 

  30. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019)

  31. Jeaugey, S.: Nccl 2.0. In: GPU Technology Conference (GTC), vol. 2 (2017)

    Google Scholar 

Download references

Acknowledgements

This research was done with the support of MSU Program of Development, Project No 23-SCH03-05. The research was carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizaveta Geraseva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Geraseva, E., Golovin, A. (2023). Nucleic Acid-Protein Interaction Prediction Using Geometric Deep Learning. In: Voevodin, V., Sobolev, S., Yakobovskiy, M., Shagaliev, R. (eds) Supercomputing. RuSCDays 2023. Lecture Notes in Computer Science, vol 14389. Springer, Cham. https://doi.org/10.1007/978-3-031-49435-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49435-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49434-5

  • Online ISBN: 978-3-031-49435-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics