Skip to main content

A Schnyder-Type Drawing Algorithm for 5-Connected Triangulations

  • Conference paper
  • First Online:
Graph Drawing and Network Visualization (GD 2023)

Abstract

We define some Schnyder-type combinatorial structures on a class of planar triangulations of the pentagon which are closely related to 5-connected triangulations. The combinatorial structures have three incarnations defined in terms of orientations, corner-labelings, and woods respectively. The wood incarnation consists in 5 spanning trees crossing each other in an orderly fashion. Similarly as for Schnyder woods on triangulations, it induces, for each vertex, a partition of the inner triangles into face-connected regions (5 regions here). We show that the induced barycentric vertex-placement, where each vertex is at the barycenter of the 5 outer vertices with weights given by the number of faces in each region, yields a planar straight-line drawing.

OB was partially supported by NSF Grant DMS-2154242. EF was partially supported by the project ANR19-CE48-011-01 (COMBINÉ), and the project ANR-20-CE48-0018 (3DMaps).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If we use an affine transformation to have \(v_1\), \(v_2\) and \(v_5\) placed at (0, 0), (0, 1) and (1, 0) respectively, then we get a drawing with vertex-coordinates in \(\mathbb {Q}(\sqrt{5})\).

References

  1. Bernardi, O., Fusy, É.: Schnyder decompositions for regular plane graphs and application to drawing. Algorithmica 62(3), 1159–1197 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bernardi, O., Fusy, É.: Unified bijections for maps with prescribed degrees and girth. J. Comb. Theory, Ser. A 119, 1351–1387 (2012)

    Article  MathSciNet  Google Scholar 

  3. Bernardi, O., Fusy, É., Liang, S.: Grand Schnyder woods. arXiv preprint: arXiv:2303.15630 (2023)

  4. Bernardi, O., Fusy, É., Liang, S.: A Schnyder-type drawing algorithm for 5-connected triangulations. arXiv preprint: arXiv:2305.19058v2 (2023)

  5. Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Comput. Geom. Theory Appl 9, 159–180 (1998)

    Article  MathSciNet  Google Scholar 

  6. Bonichon, N.: A bijection between realizers of maximal plane graphs and pairs of non-crossing Dyck paths. Discrete Math. 298, 104–114 (2005)

    Article  MathSciNet  Google Scholar 

  7. Bonichon, N., Felsner, S., Mosbah, M.: Convex drawings of 3-connected plane graphs. Algorithmica 47(4), 399–420 (2007)

    Article  MathSciNet  Google Scholar 

  8. Chrobak, M., Kant, G.: Convex grid drawings of 3-connected planar graphs. Int. J. Comput. Geometry Appl. 7(03), 211–223 (1997)

    Article  MathSciNet  Google Scholar 

  9. Colin de Verdière, E.: Shortening of curves and decomposition of surfaces. Ph.D. thesis, Université Paris 7 (2003)

    Google Scholar 

  10. Di Battista, G., Tamassia, R., Vismara, L.: Output-sensitive reporting of disjoint paths. Algorithmica 23(4), 302–340 (1999)

    Article  MathSciNet  Google Scholar 

  11. Felsner, S.: Convex drawings of planar graphs and the order dimension of 3-polytopes. Order 18, 19–37 (2001)

    Article  MathSciNet  Google Scholar 

  12. Felsner, S.: Geodesic embeddings and planar graphs. Order 20, 135–150 (2003)

    Article  MathSciNet  Google Scholar 

  13. Felsner, S., Schrezenmaier, H., Steiner, R.: Pentagon contact representations. Electr. J. Comb. 25(3), P3.39 (2018)

    Google Scholar 

  14. Felsner, S., Zickfeld, F.: Schnyder woods and orthogonal surfaces. Discrete Comput. Geometry 40(1), 103–126 (2008)

    Article  MathSciNet  Google Scholar 

  15. de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting Fáry embeddings of planar graphs. In: Proceedings of STOC, pp. 426–433. ACM (1988)

    Google Scholar 

  16. Fusy, É.: Transversal structures on triangulations: a combinatorial study and straight-line drawings. Discrete Math. 309, 1870–1894 (2009)

    Article  MathSciNet  Google Scholar 

  17. Gao, Z., Wanless, I., Wormald, N.: Counting 5-connected planar triangulations. J. Graph Theory 38(1), 18–35 (2001)

    Article  MathSciNet  Google Scholar 

  18. He, X.: On finding the rectangular duals of planar triangulated graphs. SIAM J. Comput. 22, 1218–1226 (1993)

    Article  MathSciNet  Google Scholar 

  19. He, X.: Grid embedding of 4-connected plane graphs. Discrete Comput. Geometry 17(3), 339–358 (1997)

    Article  MathSciNet  Google Scholar 

  20. Miller, E.: Planar graphs as minimal resolutions of trivariate monomial ideals. Doc. Math. 7, 43–90 (2002)

    Article  MathSciNet  Google Scholar 

  21. Miura, K.: Grid drawings of five-connected plane graphs. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 105(9), 1228–1234 (2022)

    Article  Google Scholar 

  22. Miura, K., Nakano, S., Nishizeki, T.: Grid drawings of 4-connected plane graphs. Discret. Comput. Geom. 26(1), 73–87 (2001)

    Article  MathSciNet  Google Scholar 

  23. Nagai, S., Nakano, S.: A linear-time algorithm to find independent spanning trees in maximal planar graphs. In: Graph-Theoretic Concepts in Computer Science: WG’2000, pp. 290–301 (2000)

    Google Scholar 

  24. Schnyder, W.: Planar graphs and poset dimension. Order 5(4), 323–343 (1989)

    Article  MathSciNet  Google Scholar 

  25. Schnyder, W.: Embedding planar graphs in the grid. In: Symposium on Discrete Algorithms (SODA), pp. 138–148 (1990)

    Google Scholar 

  26. Tamassia, R.: On embedding a graph in a grid with the minimum number of bends. SIAM J. Comput. 16, 421–444 (1987)

    Article  MathSciNet  Google Scholar 

  27. Tutte, W.: How to draw a graph. Proc. Lond. Math. Soc. 3(1), 743–767 (1963)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éric Fusy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bernardi, O., Fusy, É., Liang, S. (2023). A Schnyder-Type Drawing Algorithm for 5-Connected Triangulations. In: Bekos, M.A., Chimani, M. (eds) Graph Drawing and Network Visualization. GD 2023. Lecture Notes in Computer Science, vol 14466. Springer, Cham. https://doi.org/10.1007/978-3-031-49275-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49275-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49274-7

  • Online ISBN: 978-3-031-49275-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics