Skip to main content

Upward and Orthogonal Planarity are W[1]-Hard Parameterized by Treewidth

  • Conference paper
  • First Online:
Graph Drawing and Network Visualization (GD 2023)

Abstract

Upward planarity testing and Rectilinear planarity testing are central problems in graph drawing. It is known that they are both \(\textsf{NP}\)-complete, but \(\textsf{XP}\) when parameterized by treewidth. In this paper we show that these two problems are W[1]-hard parameterized by treewidth, which answers open problems posed in two earlier papers. The key step in our proof is an analysis of the All-or-Nothing Flow problem, a generalization of which was used as an intermediate step in the NP-completeness proof for both planarity testing problems. We prove that the flow problem is W[1]-hard parameterized by treewidth on planar graphs, and that the existing chain of reductions to the planarity testing problems can be adapted without blowing up the treewidth. Our reductions also show that the known \(n^{\mathcal {O}(\textsf{tw})}\)-time algorithms cannot be improved to run in time \(n^{o(\textsf{tw})}\) unless ETH fails.

Bart M. P. Jansen has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 803421, ReduceSearch).

Liana Khazaliya is supported by Vienna Science and Technology Fund (WWTF) [10.47379/ICT22029]; Austrian Science Fund (FWF) [Y1329]; European Union’s Horizon 2020 COFUND programme [LogiCS@TUWien, grant agreement No. 101034440].

G. Liotta and F. Montecchiani—This work was supported, in part, by MUR of Italy, under PRIN Project n. 2022ME9Z78 - NextGRAAL: Next-generation algorithms for constrained GRAph visuALization, and under PRIN Project n. 2022TS4Y3N - EXPAND: scalable algorithms for EXPloratory Analyses of heterogeneous and dynamic Networked Data.

Kirill Simonov acknowledges support by DFG Research Group ADYN via grant DFG 411362735.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://arxiv.org/abs/2309.01264.

References

  1. Amini, O., Huc, F., Pérennes, S.: On the path-width of planar graphs. SIAM J. Discret. Math. 23(3), 1311–1316 (2009). https://doi.org/10.1137/060670146

    Article  MathSciNet  Google Scholar 

  2. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs, 1st edn. Prentice Hall PTR, Upper Saddle River (1998)

    Google Scholar 

  3. Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C.: Upward drawings of triconnected digraphs. Algorithmica 12(6), 476–497 (1994). https://doi.org/10.1007/BF01188716

    Article  MathSciNet  Google Scholar 

  4. Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward planarity testing of single-source digraphs. SIAM J. Comput. 27(1), 132–169 (1998). https://doi.org/10.1137/S0097539794279626

    Article  MathSciNet  Google Scholar 

  5. Biedl, T.: Triangulating planar graphs while keeping the pathwidth small. In: Mayr, E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 425–439. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53174-7_30

    Chapter  Google Scholar 

  6. Bläsius, T., Fink, S.D., Rutter, I.: Synchronized planarity with applications to constrained planarity problems. In: Mutzel, P., Pagh, R., Herman, G. (eds.) 29th Annual European Symposium on Algorithms, ESA 2021, 6–8 September 2021, Lisbon, Portugal (Virtual Conference). LIPIcs, vol. 204, pp. 19:1–19:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.ESA.2021.19

  7. Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding problems. ACM Trans. Algorithms 12(2), 16:1–16:46 (2016). https://doi.org/10.1145/2738054

  8. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209(1–2), 1–45 (1998). https://doi.org/10.1016/S0304-3975(97)00228-4

    Article  MathSciNet  Google Scholar 

  9. Bodlaender, H.L., Cornelissen, G., van der Wegen, M.: Problems hard for treewidth but easy for stable gonality. In: Bekos, M.A., Kaufmann, M. (eds.) WG 2022. LNCS, vol. 13453, pp. 84–97. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15914-5_7

    Chapter  Google Scholar 

  10. Bodlaender, H.L., Groenland, C., Nederlof, J., Swennenhuis, C.M.F.: Parameterized problems complete for nondeterministic FPT time and logarithmic space. In: 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, 7–10 February 2022, pp. 193–204. IEEE (2021). https://doi.org/10.1109/FOCS52979.2021.00027

  11. Brückner, G., Himmel, M., Rutter, I.: An SPQR-tree-like embedding representation for upward planarity. In: Archambault, D., Tóth, C.D. (eds.) GD 2019. LNCS, vol. 11904, pp. 517–531. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35802-0_39

    Chapter  Google Scholar 

  12. Chan, H.: A parameterized algorithm for upward planarity testing. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 157–168. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30140-0_16

    Chapter  Google Scholar 

  13. Chaplick, S., Di Giacomo, E., Frati, F., Ganian, R., Raftopoulou, C.N., Simonov, K.: Parameterized algorithms for upward planarity. In: Goaoc, X., Kerber, M. (eds.) 38th International Symposium on Computational Geometry, SoCG 2022, 7–10 June 2022, Berlin, Germany. LIPIcs, vol. 224, pp. 26:1–26:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.SoCG.2022.26

  14. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  Google Scholar 

  15. Di Battista, G., Liotta, G., Vargiu, F.: Spirality and optimal orthogonal drawings. SIAM J. Comput. 27(6), 1764–1811 (1998). https://doi.org/10.1137/S0097539794262847

    Article  MathSciNet  Google Scholar 

  16. Di Giacomo, E., Liotta, G., Montecchiani, F.: Orthogonal planarity testing of bounded treewidth graphs. J. Comput. Syst. Sci. 125, 129–148 (2022). https://doi.org/10.1016/j.jcss.2021.11.004

    Article  MathSciNet  Google Scholar 

  17. Didimo, W., Giordano, F., Liotta, G.: Upward spirality and upward planarity testing. SIAM J. Discret. Math. 23(4), 1842–1899 (2009). https://doi.org/10.1137/070696854

    Article  MathSciNet  Google Scholar 

  18. Didimo, W., Kaufmann, M., Liotta, G., Ortali, G.: Rectilinear planarity of partial 2-trees. In: Angelini, P., von Hanxleden, R. (eds.) GD 2022. LNCS, vol. 13764, pp. 157–172. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22203-0_12

    Chapter  Google Scholar 

  19. Didimo, W., Liotta, G., Ortali, G., Patrignani, M.: Optimal orthogonal drawings of planar 3-graphs in linear time. In: Chawla, S. (ed.) Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, 5–8 January 2020, pp. 806–825. SIAM (2020). https://doi.org/10.1137/1.9781611975994.49

  20. Didimo, W., Liotta, G., Patrignani, M.: Hv-planarity: algorithms and complexity. J. Comput. Syst. Sci. 99, 72–90 (2019). https://doi.org/10.1016/j.jcss.2018.08.003

    Article  MathSciNet  Google Scholar 

  21. Frati, F.: Planar rectilinear drawings of outerplanar graphs in linear time. Comput. Geom. 103, 101854 (2022). https://doi.org/10.1016/j.comgeo.2021.101854

    Article  MathSciNet  Google Scholar 

  22. Fulek, R., Tóth, C.D.: Atomic embeddability, clustered planarity, and thickenability. J. ACM 69(2), 13:1–13:34 (2022). https://doi.org/10.1145/3502264

  23. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001). https://doi.org/10.1137/S0097539794277123

    Article  MathSciNet  Google Scholar 

  24. Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few crossings per edge. Algorithmica 49(1), 1–11 (2007). https://doi.org/10.1007/s00453-007-0010-x

    Article  MathSciNet  Google Scholar 

  25. Hopcroft, J.E., Tarjan, R.E.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974). https://doi.org/10.1145/321850.321852

    Article  MathSciNet  Google Scholar 

  26. Hutton, M.D., Lubiw, A.: Upward planning of single-source acyclic digraphs. SIAM J. Comput. 25(2), 291–311 (1996). https://doi.org/10.1137/S0097539792235906

    Article  MathSciNet  Google Scholar 

  27. Kaufmann, M., Wagner, D. (eds.): Drawing Graphs, Methods and Models (The Book Grow Out of a Dagstuhl Seminar, April 1999). Lecture Notes in Computer Science, vol. 2025. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44969-8

  28. Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of 1-planarity testing. J. Graph Theory 72(1), 30–71 (2013). https://doi.org/10.1002/jgt.21630

    Article  MathSciNet  Google Scholar 

  29. Liotta, G., Rutter, I., Tappini, A.: Parameterized complexity of graph planarity with restricted cyclic orders. J. Comput. Syst. Sci. 135, 125–144 (2023). https://doi.org/10.1016/j.jcss.2023.02.007

    Article  MathSciNet  Google Scholar 

  30. Nishizeki, T., Rahman, M.S.: Planar Graph Drawing, LNSC, vol. 12. World Scientific, Singapore (2004). https://doi.org/10.1142/5648

  31. Patrignani, M.: Planarity testing and embedding. In: Tamassia, R. (ed.) Handbook on Graph Drawing and Visualization, pp. 1–42. Chapman and Hall/CRC, Boca Raton (2013). https://cs.brown.edu/people/rtamassi/gdhandbook/chapters/planarity.pdf

  32. Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987). https://doi.org/10.1137/0216030

    Article  MathSciNet  Google Scholar 

  33. Tamassia, R. (ed.): Handbook on Graph Drawing and Visualization. Chapman and Hall/CRC, Boca Raton (2013). https://www.crcpress.com/Handbook-of-Graph-Drawing-and-Visualization/Tamassia/9781584884125

  34. Urschel, J.C., Wellens, J.: Testing gap k-planarity is np-complete. Inf. Process. Lett. 169, 106083 (2021). https://doi.org/10.1016/j.ipl.2020.106083

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We acknowledge the fruitful working atmosphere of Dagstuhl Seminar 23162 “New Frontiers of Parameterized Complexity in Graph Drawing”, where this work was started.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liana Khazaliya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jansen, B.M.P., Khazaliya, L., Kindermann, P., Liotta, G., Montecchiani, F., Simonov, K. (2023). Upward and Orthogonal Planarity are W[1]-Hard Parameterized by Treewidth. In: Bekos, M.A., Chimani, M. (eds) Graph Drawing and Network Visualization. GD 2023. Lecture Notes in Computer Science, vol 14466. Springer, Cham. https://doi.org/10.1007/978-3-031-49275-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49275-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49274-7

  • Online ISBN: 978-3-031-49275-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics