Skip to main content

Bismuth Determination by Controlled-Potential Coulometry: Developing a Highly Accurate Procedure Based on GET 176

  • Conference paper
  • First Online:
Reference Materials in Measurement and Technology (RMMT 2022)

Abstract

In this work, we develop a procedure for reproducing the units of bismuth mass fraction in metallic bismuth and those of bismuth (III) mass concentration in bismuth nitrate solutions by controlled-potential coulometry based on the GET 176–2019 State primary standard of mass (molar, atomic) fraction units and mass (molar) concentration of components in liquid and solid substances and materials based on coulometry. The results obtained can be used when manufacturing certified reference materials (CRMs) for the composition of high-purity bismuth and CRMs for the composition of solutions of bismuth (III) ions directly traceable to GET 176–2019. These CRMs may find application in pharmacological, metallurgical, and nuclear industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Federal Information Fund for Ensuring the Uniformity of Measurements. Available via FIF EUM. https://fgis.gost.ru/fundmetrology. Accessed 4 August 2022 (In Russ.).

  2. 2.

    GSO 2732-83–2735-83 Reference materials composition of bismuth metal grade Vi 00-02. Available via FIF EUM. https://fgis.gost.ru/fundmetrology/registry/19/items/552242. Accessed 4 August 2022 (In Russ.).

  3. 3.

    GSO 5474-90 Reference materials composition of bismuth concentrate. Available via FIF EUM. https://fgis.gost.ru/fundmetrology/registry/19/items/583301. Accessed 4 August 2022 (In Russ.).

  4. 4.

    GSO 8463-2003 Reference materials composition of a solution of bismuth ions. Available via FIF EUM. https://fgis.gost.ru/fundmetrology/registry/19/items/391720. Accessed 4 August 2022 (In Russ.).

    GSO 7477-98 Reference materials composition of a solution of bismuth (III) ions. Available via FIF EUM. https://fgis.gost.ru/fundmetrology/registry/19/items/392396 Accessed 4 August 2022 (In Russ.).

  5. 5.

    GET 176-2019 State primary standard of units of mass (molar, atomic) fraction and mass (molar) concentration of components in liquid and solid substances and materials based on coulometry (includes 3 installations on the basis of constant current coulometry, controlled potential coulometry and inductively coupled plasma mass spectrometry): Custodian Institute UNIIM—Affiliated Branch of the D. I. Mendeleyev Institute for Metrology. Available via FIF EUM. https://fgis.gost.ru/fundmetrology/registry/12/items/1382712. Accessed 4 august 2022 (In Russ.).

References

  1. Dey BC (2022) Bismuth chemical properties (25 Facts you should know). Available via Lambda Geeks. https://lambdageeks.com/bismuth-chemical-properties/. Accessed 4 Aug 2022

  2. Polyvjannyj IR, Ablanov AD, Batyrbekova SA (1989) Bismuth. Nauka, Alma-ata, 316 p (in Russian)

    Google Scholar 

  3. Denisov VM, Belousova NV, Moiseev GK, Bakhvalov SG, Istomin SA, Pastukhov EA, (2001) Vismutsoderzhashchie materialy: stroenie i fiziko-khimicheskie svoistva (Bismuth-containing materials: structure and physicochemical properties). Russ J Appl Chem 74:900. https://doi.org/10.1023/A:1017453131550

  4. Gülseren MK, Kovan V, Tezel T (2023) Three-dimensional printability of bismuth alloys with low melting temperatures. J Manuf Process 92:238–246. https://doi.org/10.1016/j.jmapro.2023.02.057

    Article  Google Scholar 

  5. Gu D, Yuan Y, Liu J, Li D, Zhang W, Wu L et al (2022) The electrochemical properties of bismuth-antimony-tin alloy anodes for magnesium ion batteries. J Power Sour 548:232076. https://doi.org/10.1016/j.jpowsour.2022.232076

    Article  Google Scholar 

  6. Mohsin TB, Abidul Islam SM, Tonni TT, Rhaman MM (2023) Analysis of conductivity and band-gap energy of bismuth ferrite nanoparticles as prospective photovoltaic material. Mater Today Proc. Available online 8 Feb. https://doi.org/10.1016/j.matpr.2023.01.330

  7. Bernard-Granger G, Addad A, Navone C, Soulier M, Simon J, Szkutnik PD (2012) Influence of nanosized inclusions on the room temperature thermoelectrical properties of a p-type bismuth–tellurium–antimony alloy. Acta Mater 60(11):4523–4530. https://doi.org/10.1016/j.actamat.2012.05.007

    Article  ADS  Google Scholar 

  8. Karimov KhS, Fatima N, Qasuria TA, Siddiqui KJ, Bashir MM, Alharbi HF (2020) Innovative semitransparent photo-thermoelectric cells based on bismuth antimony telluride alloy. J Alloy Compd 816:152593. https://doi.org/10.1016/j.jallcom.2019.152593

    Article  Google Scholar 

  9. Jensen BA, Tang W, Liu X, Nolte AI, Ouyang G et al (2019) Optimizing composition in MnBi permanent magnet alloys. Acta Mater 181:595–602. https://doi.org/10.1016/j.actamat.2019.10.003

    Article  ADS  Google Scholar 

  10. Qin X, Sui C, Di L, Wang L, Xu X (2019) Studies on preparation and properties of low temperature phase of MnBi prepared by electrodeposition. J Alloy Compd 787:1272–1279. https://doi.org/10.1016/j.jallcom.2019.02.109

    Article  Google Scholar 

  11. El-Sharkawy RM, Abdou FS, Gizawy MA, Allam EA, Mahmoud ME (2023) Bismuth oxide nanoparticles (Bi2O3 NPs) embedded into recycled-Poly(vinyl chloride) plastic sheets as a promising shielding material for gamma radiation. Radiat Phys Chem 208:110838. https://doi.org/10.1016/j.radphyschem.2023.110838

    Article  Google Scholar 

  12. Praveenkumar P, Venkatasubbu DG, Thangadurai P (2019) Nanocrystalline bismuth oxyiodides thick films for X-ray detector. Mater Sci Semicond Process 104:104686. https://doi.org/10.1016/j.mssp.2019.104686

    Article  Google Scholar 

  13. Rameshkumar C, Gayathri R, Subalakshmi R (2021) Synthesis and characterization of undopped bismuth ferrite oxide nanoparticles for the application of cancer treatment. Mater Today Proc 43(6):3662–3665. https://doi.org/10.1016/j.matpr.2020.09.840

    Article  Google Scholar 

  14. Shetu SA, Sanchez-Palestino LM, Rivera-Sanchez G, Bandyopadhyay D (2022) Medicinal bismuth: Bismuth-organic frameworks as pharmaceutically privileged compounds. Tetrahedron 129:133117. https://doi.org/10.1016/j.tet.2022.133117

    Article  Google Scholar 

  15. Sun H, Sadler PJ (1999) Bismuth Antiulcer Complexes. In: Clarke MJ, Sadler PJ (eds) Metallopharmaceuticals II. Topics in biological inorganic chemistry, vol 2. Springer, Berlin, Heidelberg, pp 159–185. https://doi.org/10.1007/978-3-642-60061-6_5

  16. Salvador JAR, Figueiredo SAC, Pinto RMA, Silvestre SM (2012) Bismuth compounds in medicinal chemistry. Future Med Chem 4:1495–1523. https://doi.org/10.4155/fmc.12.95

    Article  Google Scholar 

  17. Timakova EV, Bun’kova EI, Afonina LI et al (2021) Synthesis of high-purity basic bismuth(III) succinate as a pharmaceutical substance. Russ J Appl Chem 94:911–919.https://doi.org/10.1134/S1070427221070077

  18. Andrews PC, Ferrero RL, Junk PC, Kumar I, Luu Q, Nguyen K (2010) Bismuth (III) complexes derived from non-steroidal anti-inflammatory drugs and their activity against Helicobacter pylori. Dalton Trans 39(11):2861–2868. https://doi.org/10.1039/c000164c

    Article  Google Scholar 

  19. Ottlecz A, Romero JJ, Hazell SL, Graham DY, Lichtenberger LM (1993) Phospholipase activity of Helicobacter pylori and its inhibition by bismuth salts. Dig Dis Sci 38(11):2071–2080. https://doi.org/10.1007/BF01297087

    Article  Google Scholar 

  20. GOST 28407.1-89 Bismuth concentrate. Methods for determination of bismuth. Gosudarstvennyj komitet SSSR po upravleniju kachestvom produkcii i standartam, Moscow, 6 p (in Russian)

    Google Scholar 

  21. GOST 11125-84 (2006) Super pure nitric acid. Specifications. Standartinform, Moscow, 26 p (in Russian)

    Google Scholar 

  22. Zyskin VM, Shimolin AI, Sobina AV, Terentiev GI (2016) Bating a reference installation based on controlled-potential coulometry metod in the frame of improving the state primary standard GET 176 and its measurement capabilities. Measure Stand Ref Mater 2:44–54 (in Russian). https://doi.org/10.20915/2077-1177-2016-0-2-44-54

  23. GOST 6563-75 (2009) Technical articles made of noble metals and their alloys. Specifications. Standartinform, Moscow, 49 p (in Russian)

    Google Scholar 

  24. Zyskin VM, Gusev VN, Terentiev GI, Mogilevskiy AN (2012) The use of precise coulometry with controlled potential for the determination of metrological characteristics of certified reference materials for composi tion of substances. Ref Mater 1:53–60 (in Russian)

    Google Scholar 

  25. Mohr PJ, Taylor BN, Newell DB (2019) CODATA recommended 2018 values of the fundamental physical constants: 2014. Available via NIST. http://physics.nist.gov/constants. Accessed 4 Aug 2022 (in Russian)

  26. Mogilevskii AN (2000) Precise controlled-potential coulometry: instrumental errors. J Anal Chem 55:1080–1084. https://doi.org/10.1007/BF02757337

    Article  Google Scholar 

  27. Rechnitz GA (1963) Controlled-potential analysis. Pergamon Press, Oxford, New York, p 108

    Google Scholar 

  28. GOST R 54500.3-2011 (2012) Uncertainty of measurement. Part 3. Guide to the expression of uncertainty in measurement. Standartinform, Moscow, 107 p (in Russian)

    Google Scholar 

  29. JCGM 100:2008 Evaluation of measurement data—guide to the expression of uncertainty in measurement. Available via BIPM. https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6. Accessed 4 Aug 2022 (in Russian)

Download references

Acknowledgements

The research was performed within the framework of the research theme “Development, improvement, and maintenance of the state primary measurement standards, as well as development and improvement of the state primary reference measurement procedures (methods).” All measurements were performed using the facilities of UNIIM, a branch of D.I. Mendeleyev All-Russian Institute for Metrology.

Author Contribution

Zyskin V. M.—research concept, measurement technique development, experimental data collection, literature data review, preparation of the original text of the article; Sobina A. V.—supervision, experimental data analysis, revision and editing the text of the article.

Conflict of Interest

The article was prepared on the basis of a report presented at the V International Scientific Conference “Reference materials in measurements and technologies” (Yekaterinburg, September 13–16, 2022). The article was admitted for publication after the abstract was revised, the article was formalized and the review procedure was carried out.

The version in the Russian language is published in the journal “Measurement Standards. Reference Materials” 2023;19(4):129–141. (In Russ.). https://doi.org/10.20915/2077-1177-2023-19-4-129-141.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veniamin M. Zyskin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 D. I. Mendeleyev Institute for Metrology

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zyskin, V.M., Sobina, A.V. (2024). Bismuth Determination by Controlled-Potential Coulometry: Developing a Highly Accurate Procedure Based on GET 176. In: Sobina, E.P., et al. Reference Materials in Measurement and Technology . RMMT 2022. Springer, Cham. https://doi.org/10.1007/978-3-031-49200-6_15

Download citation

Publish with us

Policies and ethics