Skip to main content

Distortion Compensation of Thin-Walled Parts by Pre-Deformation in Powder Bed Fusion with Laser Beam

  • Chapter
  • First Online:
Lectures Notes on Advanced Structured Materials 2

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 203))

  • 150 Accesses

Abstract

Metal additive manufacturing offers great potential to translate optimized product designs into usable parts with superior performance. Among the existing process categories, powder bed fusion with laser beam (PBF-LB/M) has gained the largest acceptance in industrial applications. Parts are created layer-by-layer with repetitive melting of newly added metal powder layers with a laser beam. Rapid solidification causes shrinkage, which leads to the development of residual stresses and distortions. To avoid geometric part failures, finite element (FE) models are used to predict and compensate for the expected part distortions. However, especially thin-walled parts, for whose production PBF-LB/M is particularly well suited, are difficult to print first time right within tight geometric tolerances. In this study, we show two approaches to improve the prediction and compensation capability of a part-scale FE model for PBF-LB/M simulation. A refined super layer approach was used to capture local shrinkage effects at abrupt part cross-section changes and an iterative, non-uniform compensation approach helped to minimize the distortions. Thin-walled artifacts were printed from AlSi10Mg powder and 3D scanned in as-built condition to measure the distortions. The experimental validation showed good agreement with the simulation results. The overall shape deviation of the thin walls was reduced by 50% and the maximum wall distortions were reduced from 0.36 mm to 0.13 mm. Despite some remaining local distortions, the used approaches contribute to the desirable first-time-right manufacturing with the PBF-LB/M process and make simulation based pre-deformation more effective for thin-walled parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese, A.M., Wilson-Heid, A., De, A., Zhang, W.: Additive manufacturing of metallic components—process, structure and properties. Prog. Mater. Sci. (2018). https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  Google Scholar 

  2. Ibhadode, O., Zhang, Z., Sixt, J., Nsiempba, K.M., Orakwe, J., Martinez-Marchese, A., Ero, O., Shahabad, S.I., Bonakdar, A., Toyserkani, E.: Topology optimization for metal additive manufacturing: current trends, challenges, and future outlook. Virtual Phys. Prototyp. (2023). https://doi.org/10.1080/17452759.2023.2181192

    Article  Google Scholar 

  3. Kruth, J.-P., Froyen, L., van Vaerenbergh, J., Mercelis, P., Rombouts, M., Lauwers, B.: Selective laser melting of iron-based powder. J. Mater. Process. Technol. (2004). https://doi.org/10.1016/j.jmatprotec.2003.11.051

    Article  Google Scholar 

  4. Xie, D., Lv, F., Liang, H., Shen, L., Tian, Z., Zhao, J., Song, Y., Shuai, C.: Towards a comprehensive understanding of distortion in additive manufacturing based on assumption of constraining force. Virtual Phys. Prototyp. (2021). https://doi.org/10.1080/17452759.2021.1881873

    Article  Google Scholar 

  5. Buchbinder, D., Schilling, G., Meiners, W., Pirch, N., Wissenbach, K.: Untersuchung zur Reduzierung des Verzugs durch Vorwärmung bei der Herstellung von Aluminiumbauteilen mittels SLM. RTejournal—Forum für Rapid Technologie 8 (2011)

    Google Scholar 

  6. Gan, M.X., Wong, C.H.: Practical support structures for selective laser melting. J. Mater. Process. Technol. (2016). https://doi.org/10.1016/j.jmatprotec.2016.08.006

    Article  Google Scholar 

  7. Liang, X., White, L., Cagan, J., Rollett, A.D., Zhang, Y.J.: Unit-based design of cross-flow heat exchangers for LPBF additive manufacturing. J. Mech. Des. (2023). https://doi.org/10.1115/1.4055734

    Article  Google Scholar 

  8. VDI 3405 Part 2.8: Additive manufacturing processes—powder bed fusion of metal with laser beam (PBF-LB/M)—defect catalogue—defect images during laser beam melting. Beuth Verlag GmbH, Berlin (2022)

    Google Scholar 

  9. Taylor, H.C., Garibay, E.A., Wicker, R.B.: Toward a common laser powder bed fusion qualification test artifact. Addit. Manuf. (2021). https://doi.org/10.1016/j.addma.2020.101803

    Article  Google Scholar 

  10. DIN-Normenausschuss Werkstofftechnologie, DIN-Normenausschuss Schweißen und verwandte Verfahren: DIN EN ISO/ASTM 52911–1, Additive Fertigung—Konstruktion—Teil 1: Laserbasierte Pulverbettfusion von Metallen

    Google Scholar 

  11. Bayerlein, F.A.: Managing form deviation in laser beam melting by pre-deformation. dissertation, Technische Universität München (2020). https://mediatum.ub.tum.de/1535958

  12. Clijsters, S., Craeghs, T., Moesen, M., Kruth, J.P.: Optimization of thin wall structures in SLM. In: Direct Digital Manufacturing Conference. Fraunhofer, Berlin (2012)

    Google Scholar 

  13. Afazov, S., Semerdzhieva, E., Scrimieri, D., Serjouei, A., Kairoshev, B., Derguti, F.: An improved distortion compensation approach for additive manufacturing using optically scanned data. Virtual Phys. Prototyp. (2021). https://doi.org/10.1080/17452759.2021.1881702

    Article  Google Scholar 

  14. Branner, G.: Modellierung transienter Effekte in der Struktursimulation von Schichtbauverfahren. Dissertation. Forschungsberichte IWB, vol. 246. Herbert Utz Verlag, München (2010)

    Google Scholar 

  15. Gruber, K., Ziółkowski, G., Pawlak, A., Kurzynowski, T.: Effect of stress relief and inherent strain-based pre-deformation on the geometric accuracy of stator vanes additively manufactured from inconel 718 using laser powder bed fusion. Precis. Eng. 76, 360–376 (2022)

    Article  Google Scholar 

  16. Frigioescu, T., Matache, G., Badea, T., Ionita, D.: Distortion compensation of IN 625 parts manufactured by selective laser melting. In: AIP Conference Proceedings, vol. 2302, p. 120005. AIP Publishing (2020)

    Google Scholar 

  17. Chen, C., Xiao, Z., Zhu, H., Zeng, X.: Deformation and control method of thin-walled part during laser powder bed fusion of Ti–6Al–4V alloy. Int. J. Adv. Manuf. Technol. (2020). https://doi.org/10.1007/s00170-020-06104-0

    Article  Google Scholar 

  18. Peter, N., Pitts, Z., Thompson, S., Saharan, A.: Benchmarking build simulation software for laser powder bed fusion of metals. Addit. Manuf. (2020). https://doi.org/10.1016/j.addma.2020.101531

    Article  Google Scholar 

  19. Seidel, C., Zaeh, M.F.: Multi-scale modelling approach for contributing to reduced distortion in parts made by laser-based powder bed fusion. Procedia CIRP (2018). https://doi.org/10.1016/j.procir.2017.12.199

    Article  Google Scholar 

  20. Keller, N.: Verzugsminimierung bei selektiven Laserschmelzverfahren durch Multi-Skalen-Simulation. Dissertation, Universität Bremen (2017). https://media.suub.uni-bremen.de/handle/elib/1201

  21. Afazov, S., Denmark, W.A., Lazaro Toralles, B., Holloway, A., Yaghi, A.: Distortion prediction and compensation in selective laser melting. Addit. Manuf. (2017). https://doi.org/10.1016/j.addma.2017.07.005

    Article  Google Scholar 

  22. Afazov, S., Rahman, H., Serjouei, A.: Investigation of the right first-time distortion compensation approach in laser powder bed fusion of a thin manifold structure made of Inconel 718. J. Manuf. Process. (2021). https://doi.org/10.1016/j.jmapro.2021.08.016

    Article  Google Scholar 

  23. Yaghi, A., Ayvar-Soberanis, S., Moturu, S., Bilkhu, R., Afazov, S.: Design against distortion for additive manufacturing. Addit. Manuf. (2019). https://doi.org/10.1016/j.addma.2019.03.010

    Article  Google Scholar 

  24. Irwin, J., Gouge, M.: Chapter 15—Validation of the American Makes Builds. In: Gouge, M. (ed.) Thermo-Mechanical Modeling of Additive Manufacturing, pp. 251–263. Elsevier Science & Technology, Saint Louis (2018)

    Google Scholar 

  25. ANSYS, Inc.: Ansys Workbench Additive Manufacturing Analysis Guide. 2022R2 (2022)

    Google Scholar 

  26. ANSYS, Inc.: Additive Manufacturing Tutorials. 2022R2 (2022)

    Google Scholar 

  27. Huang, H., Wang, Y., Chen, J., Feng, Z.: A Comparative study of layer heating and continuous heating methods on prediction accuracy of residual stresses in selective laser melted tube samples. Integr. Mater. Manuf. Innov. (2021). https://doi.org/10.1007/s40192-021-00217-4

    Article  Google Scholar 

  28. Alvarez, P., Ecenarro, J., Setien, I., Sebastian, M.S., Echeverria, A., Eciolaza, L.: Computationally efficient distortion prediction in powder bed fusion additive manufacturing. Int. J. Eng. Res. Sci 10, 39–46 (2016)

    Google Scholar 

  29. Makinde, A., Jagdale, V., Megahed, M.: Influence of computational grid and deposit volume on residual stress and distortion prediction accuracy for additive manufacturing modeling. In: Mason, P., Fisher, C.R., Glamm, R., Manuel, M.V., Schmitz, G.J., Singh, A.K., Strachan, A. (eds.) Proceedings of the 4th world congress on integrated computational materials engineering (ICME 2017). The Minerals, Metals & Materials Series, pp. 365–374. Springer International Publishing, Cham, s.l. (2017)

    Google Scholar 

  30. ANSYS, Inc.: Additive manufacturing beta features. 2022R2 (2022)

    Google Scholar 

  31. Decker, N., Huang, Q.: Optimizing the expected utility of shape distortion compensation strategies for additive manufacturing. Procedia Manuf. (2021). https://doi.org/10.1016/j.promfg.2021.06.038

    Article  Google Scholar 

Download references

Acknowledgements

This paper is partially funded by dtec.bw—Digitalization and Technology Research Center of the Bundeswehr, which we gratefully acknowledge [project FLAB-3Dprint]. dtec.bw is funded by the European Union—NextGenerationEU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Brenner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brenner, S., Nedeljkovic-Groha, V. (2024). Distortion Compensation of Thin-Walled Parts by Pre-Deformation in Powder Bed Fusion with Laser Beam. In: Altenbach, H., Hitzler, L., Johlitz, M., Merkel, M., Öchsner, A. (eds) Lectures Notes on Advanced Structured Materials 2. Advanced Structured Materials, vol 203. Springer, Cham. https://doi.org/10.1007/978-3-031-49043-9_12

Download citation

Publish with us

Policies and ethics