Skip to main content

Synergizing Reinforcement Learning for Cognitive Medical Decision-Making in Sepsis Detection

  • Conference paper
  • First Online:
Information and Software Technologies (ICIST 2023)

Abstract

When the body’s defense against an infection damages its own tissues and causes organ malfunction, it develops sepsis, a catastrophic medical illness. Administering intravenous fluids and antibiotics promptly can increase the patient’s chances of survival. In order to determine the best treatment plans for septic patients, this study investigates the application of deep reinforcement learning and continuous state-space models. The method produces clinically comprehensible policies that could assist doctors in intensive care in empowering medical professionals to make informed decisions that ultimately enhance the prospects of patient survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Futoma, J.: Gaussian process-based models for clinical time series in healthcare. Doctoral dissertation, Duke University (2018)

    Google Scholar 

  2. Raghu, A., et al.: Deep reinforcement learning for sepsis treatment. arXiv preprint arXiv:1711.09602 (2017)

  3. Tardini, E., et al.: Optimal treatment selection in sequential systemic and locoregional therapy of oropharyngeal squamous carcinomas: deep Q-learning with a patient-physician digital twin dyad. J. Med. Internet Res. 24(4), e29455 (2022). https://doi.org/10.2196/29455

    Article  MathSciNet  Google Scholar 

  4. Goh, K., et al.: Artificial intelligence in sepsis early prediction and diagnosis using unstructured data in healthcare. Nat. Commun. (2021). https://doi.org/10.1038/s41467-021-20910-4

  5. Jonsson, A.: Deep reinforcement learning in medicine. Kidney Dis. 5, 18–22 (2019). https://doi.org/10.1159/000492670

    Article  Google Scholar 

  6. Littman, M.L.: A tutorial on partially observable Markov decision processes. J. Math. Psychol. 53(3), 119–125 (2009)

    Article  MathSciNet  Google Scholar 

  7. Johnson, A., Pollard, T., Mark, R.: MIMIC-III clinical database demo (v14). PhysioNet (2019). https://doi.org/10.13026/C2HM2Q

  8. Cao, L., Zhi, M.: An overview of deep reinforcement learning. In: CACRE2019: Proceedings of the 2019 4th International Conference on Automation, Control and Robotics Engineering, pp. 1–9 (2019). https://doi.org/10.1145/3351917.3351989

  9. Johnson, A.E.W., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016)

    Article  Google Scholar 

  10. Carew, J.M.: Tech Target blog. Tech Target Enterprise AI. techtarget.com/definition/reinforcement-learning

  11. Mammen, P.M., Kumar, H.: Explainable AI: Deep reinforcement learning agents for residential demand side cost savings in smart grids (2019)

    Google Scholar 

  12. Kim, H.I., Park, S.: Sepsis: early recognition and optimized treatment. https://doi.org/10.4046/trd.2018.0041

  13. Barnes, S., Hamrock, E., Toerper, M., Siddiqui, S., Levin, S.: Real-time prediction of inpatient length of stay for discharge prioritization. J. Am. Med. Inform. Assoc. 23, e2–e10 (2015)

    Article  Google Scholar 

  14. Hester, T., et al.: Deep q-learning from demonstrations. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  15. Komorowski, M., Celi, L.A., Badawi, O., Gordon, A.C., Faisal, A.A.: The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care. Nat. Med. 24, 1716–1720 (2018). https://doi.org/10.1038/s41591-018-0213-5

    Article  Google Scholar 

  16. Guo, B., Zhang, X., Sheng, Q., Yang, H.: Dueling deep-Q-network based delay-aware cache update policy for mobile users in fog radio access networks. IEEE Access 1 (2020). https://doi.org/10.1109/ACCESS.2020.2964258

  17. Patel, Y.: Optimizing market making using multi-agent reinforcement learning (2018). https://doi.org/10.13140/RG.2.2.22476.87686

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshita Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, L., Kamra, L. (2024). Synergizing Reinforcement Learning for Cognitive Medical Decision-Making in Sepsis Detection. In: Lopata, A., Gudonienė, D., Butkienė, R. (eds) Information and Software Technologies. ICIST 2023. Communications in Computer and Information Science, vol 1979. Springer, Cham. https://doi.org/10.1007/978-3-031-48981-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48981-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48980-8

  • Online ISBN: 978-3-031-48981-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics