Skip to main content

Modeling and Performance Analysis of High Vacuum Flat Plate Hybrid Photovoltaic-Thermal Collectors

  • Conference paper
  • First Online:
IGEC Transactions, Volume 1: Energy Conversion and Management (IAGE 2023)

Part of the book series: Springer Proceedings in Energy ((SPE))

Included in the following conference series:

  • 70 Accesses

Abstract

We present a novel design for a High Vacuum Photovoltaic-Thermal (HV PV-T) device, which combines photovoltaics and thermal energy conversion in a flat-plane architecture. Our design aims to reduce convective heat loss via high-vacuum encapsulation, whilst maintaining high electrical efficiency even at elevated temperatures. This system is well suited for converting solar energy into thermal energy and effectively meeting thermal demands in industrial processes, especially those needing temperatures up to 150 °C, like boiling and pasteurization. The PV-T system consists of three primary components: a glass covering and a metallic vessel, which keep the device under high vacuum conditions (p < 0.1 Pa), and the central PV-T device. The PV-T device comprises four essential layers namely, a Transparent Conductive Oxide (TCO), a Perovskite-based PV cell, a Solar Absorber (SA), and a copper substrate. These layers are welded onto a copper piping to allow heat extraction via heat transfer fluid. For a comprehensive evaluation of the proposed PV-T device performances, we developed a one-dimensional numerical model in MATLAB. The observed performance outcomes are affected by radiative losses, which depend on both the operating temperature \(\left( {T_{op} } \right)\) and the emittance of the TCO layer \(\left( {\varepsilon_{TCO} } \right)\). Therefore, we conducted a performance analysis by changing these two parameters within the appropriate ranges of (25 \(\div\) 175) °C and (0.05 \(\div\) 0.45). The annual thermal and electrical outputs of our PV-T system were evaluated, employing hourly meteorological data from Amsterdam (Netherlands), Naples (Italy), and Doha (Qatar). In addition, a comparative analysis was conducted with commercial High-Vacuum Flat Plate Solar-Thermal (HVFP ST) collectors and PV panels. The results indicate that at a temperature of 100 °C and with emittance values below 0.21, the annual thermal yields surpass 503 kWh/(m2 year) for Amsterdam, 941 kWh/(m2 year) for Naples, and 1278 kWh/(m2 year) for Doha. Furthermore, annual electrical generation stands at 158 kWh/(m2 year) for Amsterdam, 234 kWh/(m2 year) for Naples, and 288 kWh/(m2 year) for Doha. In terms of economic viability, our study shows promising outcomes. In Naples’ climate, for an annual thermal demand of 26 GWh, a cost margin of 248 €/m2 is granted to our suggested HV PV-T system to achieve the same Simple Pay-Back time as the HVFP ST solution. In such a situation, the HV PV-T option can lower annual CO2 emissions by 58% more than the HVFP ST solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Area, m2

AS:

Annual Saving, €/year

CIGS:

Copper Indium Gallium Selenide

\({\text{c}}_{{{\text{s}},{\text{NG}}}}\):

Natural Gas specific cost, €/m3

\(c_{{{\text{kWh}}_{el} }}\):

Specific cost of electrical energy, €/kWhel

\({\Delta }J^{tot}\):

Specific cost margin, €/m2

\({\Delta }M_{PV - T}\):

Additional Annual Emissions Saving tCO2/year

\(E_{el}\):

Annual Electrical production per m2, kWh/m2year

\(\overline{E}_{el,prod}\):

Annual Electrical production, kWhel/year

\(\overline{E}_{p}\):

Primary Energy Consumption, kWhp/year

\(\mathop {Ex}\limits^{.}_{out}\):

Exergetic output per square meter, W/m2

\(Ex_{out}\):

Annual Exergetic production per m2, kWh/m2 year

\(f_{std}^{NG}\):

Standard natural gas emission factor, \({\text{kg}}_{{{\text{CO}}_{2} }} /{\text{kWh}}_{p}\)

\(f_{std}^{NTEP}\):

Standard national thermo-electric park emission factor,\({\text{kg}}_{{{\text{CO}}_{2} }} /{\text{kWh}}_{el}\)

h:

Hour

hw:

Heat transfer coefficient, W/m2K

\(HRF\):

Heat Removal Factor

HVFP ST:

High-vacuum flat plate solar-thermal

HV PV-T:

High-vacuum flat plate photovoltaic-thermal

I:

Global Irradiation, W/m2

\(I_{\lambda }\):

Spectral Irradiance, W/m2nm

IC:

Investment Cost, €

\(J^{tot}\):

Specific Investment Cost, €/m2

\({\text{LHV}}\):

Natural Gas Lower Heating Value, kWhp/m3

\(M_{RS}\):

Annual CO2 emissions of the reference system, tCO2/year

M:

Annual CO2 emissions saving, tCO2/year

NG:

Natural Gas

\(\dot{P}_{el}\):

Electrical power per square meter, W/m2

PS1, PS2:

Proposed Systems

\(\dot{Q}\):

Thermal power per square meter, W/m2

\(Q\):

Annual Thermal production per square meter, kWh/m2 year

\(Q_{th,eff}\):

Effective Annual Thermal production per square meter, kWh/m2 year

\(\overline{Q}_{th,d}\):

Annual Thermal demand, GWh/year

RC:

Running Costs, €/year

RS:

Reference System

SPB:

Simple Pay-Back, years

SSA:

Selective Solar Absorber

T:

Thickness, m

T:

Temperature, °C

TCO:

Transparent Conductive Oxide

\(\alpha\):

Absorptance

ε:

Emittance

\(\eta\):

Efficiency

\(\overline{\eta }\):

Annual efficiency

\(\eta_{c}\):

Carnot efficiency

\(\eta_{b}\):

Combustion efficiency

\(\lambda\):

Wavelength, nm

\(\sigma\):

Stefan-Boltzmann constant, W/m2 K4

\(\tau\):

Transmittance

ABS:

Absorbent surface

amb:

Ambient

el:

Electrical

g:

Glass

min:

Minimum

op:

Operating

out:

Output

p:

Primary energy

PV:

PV cell

\(PV - T\):

Relative to the HV PV-T collector/solar field

s:

Substrate

SA:

Solar Absorber

SB:

Stefan-Boltzmann

\(ST\) :

Relative to the HVFP ST collector/solar field

STC:

Standard test conditions

th:

Thermal

tot:

Total (thermal + electrical)

v:

Vessel

w:

Wind

\(PV - T\):

Relative to the HV PV-T collector/solar field

\(ST\):

Relative to the HVFP ST collector/solar field

References

  1. C. Lauterbach, B. Schmitt, U. Jordan, K. Vajen, The potential of solar heat for industrial processes in Germany. Renew. Sustain. Energy Rev. 16, 5121–5130 (2012)

    Article  Google Scholar 

  2. A. Shahsavari, M. Akbari, Potential of solar energy in developing countries for reducing energy-related emissions. Renew. Sustain. Energy Rev. 90, 275–291 (2018)

    Article  Google Scholar 

  3. M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Solar cell efficiency tables (version 57). Prog. Photovoltaics: Res. Appl. 29(1), 3–15 (2021)

    Google Scholar 

  4. B.M. Kayes, H. Nie, R. Twist, S.G. Spruytte, F. Reinhardt, I.C. Kizilyalli, G.S. Higashi, 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. 37th IEEE Photovoltaic Specialists Conference (2011)

    Google Scholar 

  5. H. Teo, P. Lee, M. Hawlader, An active cooling system for photovoltaic modules. Appl. Energy 90, 309–315 (2012)

    Article  Google Scholar 

  6. M. Wolf, Performance analyses of combined heating and photovoltaic power systems for residences. Energy Convers. 16, 79–90 (1976)

    Article  Google Scholar 

  7. L. Florschuetz, Extension of the Hottel-Whillier model to the analysis of combined photovoltaic/thermal flat plate collectors. Sol. Energy 22, 361–366 (1979)

    Article  Google Scholar 

  8. S.D. Hendrie, Photovoltaic/thermal collector development program. Final Rep (1982)

    Google Scholar 

  9. S.S. Joshi, A.S. Dhoble, Photovoltaic-thermal systems (PVT): technology review and future trends. Renew. Sustain. Energy Rev. 92, 848–882 (2018)

    Article  Google Scholar 

  10. M. Farshchimonfared, J. Bilbao, A. Sproul, Channel depth, air mass flow rate and air distribution duct diameter optimization of photovoltaic thermal (PV/T) air collectors linked to residential buildings. Renew. Energy 76, 27–35 (2015)

    Article  Google Scholar 

  11. M. Herrando, C.N. Markides, K. Hellgardt, A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: system performance. Appl. Energy 122, 288–309 (2014)

    Article  Google Scholar 

  12. A. Mellor, D.A. Alvarez, I. Guarracino, A. Ramos, A.R. Lacasta, L.F. Llin, A. Murrell, D. Paul, D. Chemisana, C. Markides, N. Ekins- Daukes, Roadmap for the next-generation of hybrid photovoltaic-thermal solar energy collectors. Sol. Energy 174, 386–398 (2018)

    Article  Google Scholar 

  13. M. Hu, C. Guo, B. Zhao, X. Ao, J. Suhendri, Q. Cao, S. Wang, Y. Riffat, G.P. Su, A parametric study on the performance characteristics of an evacuated flat-plate photovoltaic/thermal (PV/T) collector. Renew. Energy 167, 884–898 (2021)

    Article  Google Scholar 

  14. D. De Luca, A. Caldarelli, E. Gaudino, E. Di Gennaro, M. Musto, R. Russo, Modeling of energy and exergy efficiencies in high vacuum flat plate photovoltaic thermal (pv-t) collectors. Energy Rep. 9, 1044–1055 (2023)

    Article  Google Scholar 

  15. A. Maros, S. Gangam, Y. Fang, J. Smith, D. Vasileska, S. Goodnick, M.I. Bertoni, C.B. Honsberg, High-temperature Characterization of GaAs Single Junction Solar Cells, IEEE 42nd Photovoltaic Specialist Conference (PVSC), June 14–19 (LA, USA, New Orleans, 2015)

    Google Scholar 

  16. J. Ramanujam, D.M. Bishop, T.K. Todorov, O. Gunawan, J. Rath, R. Nekovei, E. Artegiani, A. Romeo, Flexible CIGS, CdTe and a-Si:h based thin film solar cells: a review. Prog. Mater. Sci. 110, 100619 (2020)

    Article  Google Scholar 

  17. B. Sopori, Thin-FilmSilicon Solar Cells. (Wiley Ltd, 2003), pp. 307–357. Chap. 8

    Google Scholar 

  18. M.I. Haider, H. Hu, T. Seewald, S. Ahmed, M. Sultan, L. Schmidt-Mende, A. Fakharuddin, Ethylenediamine vapors-assisted surface passivation of perovskite films for efficient inverted solar cells. Solar RRL 2201092 (2023)

    Google Scholar 

  19. M.T. Hoang, Y. Yang, B. Tuten, H. Wang, Are metal halide perovskite solar cells ready for space applications? J. Phys. Chem. Lett. 13, 2908–2920 (2022)

    Article  Google Scholar 

  20. V. Romano, A. Agresti, R. Verduci, G. D’Angelo, Advances in perovskites for photovoltaic applications in space. ACS Energy Lett. 7(8), 2490–2514 (2022)

    Article  Google Scholar 

  21. ACS Energy Letters.: 7, 1920–1925 (2022)

    Google Scholar 

  22. D. De Maio, C. D’Alessandro, A. Caldarelli, M. Musto, R. Russo, Solar selective coatings for evacuated flat plate collectors: optimisation and efficiency robustness analysis. Solar Energy Mater Solar Cells 111749 (2022)

    Google Scholar 

  23. D. De Maio, C. D’Alessandro, A. Caldarelli, D. De Luca, E. Di Gennaro, R. Russo, M. Musto, A selective solar absorber for unconcentrated solar thermal panels. Energies 14, 900 (2021)

    Article  Google Scholar 

  24. C. D’Alessandro, D. De Maio, M. Musto, D. De Luca, E. Di Gennaro, P. Bermel, R. Russo, Performance analysis of evacuated solar thermal panels with an infrared mirror. Appl. Energy 288, 116603 (2021)

    Article  Google Scholar 

  25. D. Alonso-Alvarez, L.F. Llin, A. Mellor, D.J. Paul, N.J. Ekins-Daukes, ITO and AZO films for low emissivity coatings in hybrid photovoltaic-thermal applications. Sol. Energy 155, 82–92 (2017)

    Article  Google Scholar 

  26. MT-Power DataSheet v4 SK, https://www.tvpsolar.com/products.html. Access April 29, 2023

  27. PVGIS Online Tool, https://joint-research-centre.ec.europa.eu/pvgis-online-tool_en. Access April 29, 2023

  28. Solar Payback, https://www.solar-payback.com/. Access April 29, 2023

  29. SUNPOWER, https://sunpower.maxeon.com. Access April 29, 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Strazzullo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Strazzullo, P. et al. (2024). Modeling and Performance Analysis of High Vacuum Flat Plate Hybrid Photovoltaic-Thermal Collectors. In: Zhao, J., Kadam, S., Yu, Z., Li, X. (eds) IGEC Transactions, Volume 1: Energy Conversion and Management. IAGE 2023. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-031-48902-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48902-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48901-3

  • Online ISBN: 978-3-031-48902-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics