Skip to main content

Optimal Sizing Capacities of Solar Photovoltaic and Battery Energy Storage Systems for Grid-Connected Commercial Buildings in Malaysia

  • Conference paper
  • First Online:
IGEC Transactions, Volume 1: Energy Conversion and Management (IAGE 2023)

Part of the book series: Springer Proceedings in Energy ((SPE))

Included in the following conference series:

  • 42 Accesses

Abstract

This article proposes a technique for determining the optimal capacities of solar photovoltaic (PV) and battery energy storage (BES) systems for grid-connected commercial buildings in Malaysia. The method utilizes real-time data on load patterns, solar irradiance, ambient temperature, and Malaysian power rates to establish the lowest life cycle cost (LCC) of the PV and BES systems over a 20-year lifespan. The proposed system configuration includes rule-based energy management with peak shaving. The study also considers limitations on the maximum export power of Malaysian commercial buildings for optimization. The proposed system uses the price of electricity as an index, and a case study demonstrates that it reduced the cost of electricity by 34.25% for the commercial building case with the C1 tariff. Additionally, annual energy consumption and peak demand are reduced by 20.53% and 15.25%, respectively, while selling 10,128.6274 kWh of electricity back to the grid. Further, the optimal sizing capacities of PV and BES for Malaysian commercial buildings are presented and evaluated which provides a general demonstration for customers. This article is relevant to the field of electrical engineering and offers practical solutions for optimizing solar PV and BES systems in grid-connected commercial buildings, reducing the cost of electricity, and minimizing energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\({\text{A}}\):

Area, m2

\({\text{P}}_{{\text{g}}}\):

Grid power, kW

\({\text{P}}_{{\text{g}}}^{{{\text{lim}}}}\):

Grid power limit, kW

\({\text{P}}_{{\text{d}}}\) :

Load demand, kW

\({\text{P}}_{{{\text{pv}}}}\) :

PV power, kW

\({\text{P}}_{{\text{b}}}\) :

Battery power, kW

\({\text{C}}_{{{\text{pv}}}}\) :

Rated PV capacity, kW

\({\text{D}}_{{{\text{f}},{\text{pv}}}}\) :

PV derating factor

\({\text{I}}_{{{\text{s}},{\text{r}}}}\) :

Solar irradiance, kWh/m2

\({\text{I}}_{{{\text{s}},{\text{r}}_{{{\text{STC}}}} }}\) :

Solar irradiance under standard test condition, kWh/m2

\({\text{C}}_{{\text{t}}}\) :

PV cell temperature, °C

\({\text{T}}_{{{\text{STC}}}}\) :

Temperature under standard test condition, °C

\({\text{A}}_{{{\text{pv}}}}\) :

PV module surface area, m2

\({\text{T}}_{{\text{s}}}\) :

Surface temperature, °C

\({\text{T}}_{{\text{a}}}\) :

Ambient temperature, °C

\({\text{T}}_{{{\text{an}}}}\) :

Ambient temperature at 20 °C

\({\text{T}}_{{{\text{sn}}}}\) :

Nominal cell’s operating temperature, °C

\({\text{G}}_{{\text{t}}}\) :

Solar irradiance at specific time, kWh/m2

\({\text{G}}_{{{\text{tn}}}}\) :

The nth conditions

\({\text{C}}_{{\text{b}}}\) :

Battery capacity, kWh

\({\text{E}}_{{{\text{load}}}}\) :

Average energy demand, kWh/day

\({\text{CRF}}\) :

Cost recovery factor

\({\text{i}}\) :

Interest rate, %

\({\text{y}}\) :

Project lifetime

\({\text{E}}_{{{\text{a}},{\text{c}}}}\) :

Annual energy consumption, kWh

\({\text{E}}_{{\text{c}}}\) :

Electricity cost, RM/kWh, RM/kW

\({\text{C}}_{{{\text{pv}},{\text{b}},{\text{inv}}}}\) :

Capital cost of PV, battery, and inverter, RM/kW, RM/kWh, RM/kW

\({\text{C}}_{{{\text{O}}\& {\text{M}}}}\) :

Operation and maintenance cost of PV, battery, and inverter

\({\text{U}}_{{{\text{sc}}}}\) :

Utility service charges, RM

\({\text{MD}}\) :

Maximum demand, kW

\({\text{m}}\) :

Months of year

\({\text{P}}_{{{\text{ex}}}}\) :

Export power to grid, kW

\({\text{N}}_{{{\text{pv}},{\text{b}},{\text{inv}}}}\) :

Number of PV, batteries, and inverter

\({\text{N}}_{{{\text{pv}},{\text{b}},{\text{inv}}}}^{{{\text{max}}}}\) :

Maximum number of PV, batteries, and inverter

\({\text{P}}_{{\text{b}}}^{{{\text{ch}}}}\) :

Charging power of the battery, kW

\({\text{P}}_{{\text{b}}}^{{{\text{disch}}}}\) :

Discharging power of the battery, kW

\({\text{P}}_{{\text{b}}}^{{{\text{min}}}}\) :

Minimum power of the battery, kW

\({\text{P}}_{{\text{b}}}^{{{\text{max}}}}\) :

Maximum power of the battery, kW

\({\text{E}}_{{\text{b}}}\) :

Energy of the battery, kWh

\({\text{E}}_{{\text{b}}}^{{{\text{max}}}}\) :

Maximum energy of the battery, kWh

\({\text{E}}_{{\text{b}}}^{{{\text{min}}}}\) :

Minimum energy of the battery, kWh

\({\text{P}}_{{{\text{ex}}}}^{{{\text{max}}}}\) :

Maximum export power to grid, kW

\({\upeta }_{{{\text{STC}}}}\) :

Solar cell efficiency under STC, %

\({\upeta }_{{{\text{inv}}}}\) :

Inverter efficiency, %

\({\upeta }_{{\text{b}}}\) :

Battery efficiency, %

ηp :

Solar panel efficiency, %

\({\upbeta }_{{\text{t}}}\) :

Solar absorption factor, %

\({\upbeta }_{{\text{p}}}\) :

Temperature coefficient of power, %/°C

References

  1. J. Hossain, A.F. Kadir, A.N. Hanafi, H. Shareef, T. Khatib, K.A. Baharin, M.F. Sulaima, A review on optimal energy management in commercial buildings. Energies 16(4), 1609 (2023). https://doi.org/10.3390/en16041609

    Article  Google Scholar 

  2. Y. Riffonneau, S. Bacha, F. Barruel, S. Ploix, Optimal power flow management for grid connected PV systems with batteries. IEEE Trans. Sustain. Energy 2(3), 309–320 (2011). https://doi.org/10.1109/TSTE.2011.2114901

    Article  Google Scholar 

  3. J. Hossain, A.F.A. Kadir, H. Shareef, Md.A. Hossain, Hybrid PV and battery system sizing for commercial buildings in Malaysia: a case study of FKE-2 building in UTeM, in 2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies (GlobConHT) (2023), pp. 1–6. https://doi.org/10.1109/GlobCoHT56829.2023.10087792

  4. M. Aghamohamadi, A. Mahmoudi, M.H. Haque, Two-Stage robust sizing and operation co-optimization for residential PV-battery systems considering the uncertainty of PV generation and load. IEEE Trans. Industr. Inf. 17(2), 1005–1017 (2021). https://doi.org/10.1109/TII.2020.2990682

    Article  Google Scholar 

  5. M.N. Akter, M.A. Mahmud, A.M.T. Oo, Comprehensive economic evaluations of a residential building with solar photovoltaic and battery energy storage systems: an Australian case study. Energy and Buildings 138, 332–346 (2017). https://doi.org/10.1016/j.enbuild.2016.12.065

    Article  Google Scholar 

  6. M. Alramlawi, P. Li, Design optimization of a residential pv-battery microgrid with a detailed battery lifetime estimation model. IEEE Trans. Ind. Appl. 56(2), 2020–2030 (2020). https://doi.org/10.1109/TIA.2020.2965894

    Article  Google Scholar 

  7. B. Zou, J. Peng, S. Li, Y. Li, J. Yan, H. Yang, Comparative study of the dynamic programming-based and rule-based operation strategies for grid-connected PV-battery systems of office buildings. Appl. Energy 305, 117875 (2022). https://doi.org/10.1016/j.apenergy.2021.117875

    Article  Google Scholar 

  8. Z. Abdmouleh, A. Gastli, L. Ben-Brahim, M. Haouari, N.A. Al-Emadi, Review of optimization techniques applied for the integration of distributed generation from renewable energy sources, in Renewable Energy, vol. 113 (Elsevier Ltd., 2017), pp. 266–280. https://doi.org/10.1016/j.renene.2017.05.087

  9. N.S. Kelepouris, A.I. Nousdilis, A.S. Bouhouras, G.C. Christoforidis, Cost-effective hybrid PV-battery systems in buildings under demand side management application. IEEE Trans. Ind. Appl. 58(5), 6519–6528 (2022). https://doi.org/10.1109/TIA.2022.3186295

    Article  Google Scholar 

  10. Z. Song, X. Guan, M. Cheng, Multi-objective optimization strategy for home energy management system including PV and battery energy storage. Energy Rep. 8, 5396–5411 (2022). https://doi.org/10.1016/j.egyr.2022.04.023

    Article  Google Scholar 

  11. S. Zhang, Y. Tang, Optimal schedule of grid-connected residential PV generation systems with battery storages under time-of-use and step tariffs. J. Energy Storage 23, 175–182 (2019). https://doi.org/10.1016/j.est.2019.01.030

    Article  Google Scholar 

  12. J. Li, Optimal sizing of grid-connected photovoltaic battery systems for residential houses in Australia. Renew. Energy 136, 1245–1254 (2019). https://doi.org/10.1016/j.renene.2018.09.099

    Article  Google Scholar 

  13. A. Naderipour, H. Kamyab, J.J. Klemeš, R. Ebrahimi, S. Chelliapan, S.A. Nowdeh, A. Abdullah, M. Hedayati Marzbali, Optimal design of hybrid grid-connected photovoltaic/wind/battery sustainable energy system improving reliability, cost and emission. Energy 257, 124679 (2022). https://doi.org/10.1016/j.energy.2022.124679

    Article  Google Scholar 

  14. R. Khezri, A. Mahmoudi, M.H. Haque, Optimal capacity of solar PV and battery storage for Australian grid-connected households. IEEE Trans. Ind. Appl. 56(5), 5319–5329 (2020). https://doi.org/10.1109/TIA.2020.2998668

    Article  Google Scholar 

  15. R. Ayop, N.M. Isa, C.W. Tan, Components sizing of photovoltaic stand-alone system based on loss of power supply probability, in Renewable and Sustainable Energy Reviews, vol. 81 (Elsevier Ltd, 2018), pp. 2731–2743. https://doi.org/10.1016/j.rser.2017.06.079

  16. A.A. Husain, M.H. Phesal, M.Z. Ab Kadir, U.A. Ungku Amirulddin, Techno-economic analysis of commercial size grid-connected rooftop solar pv systems in Malaysia under the nem 3.0 scheme. Appl. Sci. 11(21), 10118 (2021). https://doi.org/10.3390/app112110118

    Article  Google Scholar 

  17. T. Khatib, A. Mohamed, K. Sopian, M. Mahmoud, Optimal sizing of building integrated hybrid PV/diesel generator system for zero load rejection for Malaysia. Energy Build. 43(12), 3430–3435 (2011). https://doi.org/10.1016/j.enbuild.2011.09.008

    Article  Google Scholar 

  18. R. Manojkumar, C. Kumar, S. Ganguly, J.P.S. Catalao, Optimal peak shaving control using dynamic demand and feed-in limits for grid-connected PV sources with batteries. IEEE Syst. J. 15(4), 5560–5570 (2021). https://doi.org/10.1109/JSYST.2020.3045020

    Article  Google Scholar 

  19. R. Manojkumar, C. Kumar, S. Ganguly, H.B. Gooi, S. Mekhilef, J.P. Catalão, Rule-based peak shaving using master-slave level optimization in a diesel generator supplied microgrid. IEEE Trans. Power Syst. (2022). https://doi.org/10.1109/TPWRS.2022.3187069

    Article  Google Scholar 

  20. M.A. Hossain, R.K. Chakrabortty, M.J. Ryan, H.R. Pota, Energy management of community energy storage in grid-connected microgrid under uncertain real-time prices. Sustain. Cities Soc. 66, 102658 (2021). https://doi.org/10.1016/j.scs.2020.102658

    Article  Google Scholar 

  21. TNB, https://www.tnb.com.my/commercial-industrail/pricing-tariff1/. Access on 18 Mar 2023

  22. R. Khezri, A. Mahmoudi, M.H. Haque, Optimal capacity of PV and BES for grid-connected households in South Australia, in 2019 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 3483–3490 (2019).

    Google Scholar 

  23. T. Chowdhury, H. Chowdhury, K.S. Islam, A. Sharifi, R. Corkish, S.M. Sait, Resilience analysis of a PV/battery system of health care centres in Rohingya refugee camp. Energy 263, 125634 (2023). https://doi.org/10.1016/j.energy.2022.125634

    Article  Google Scholar 

  24. J. Hossain, N.A. Algeelani, A.H. Al-Masoodi, A.F. Kadir, Solar-wind power generation system for street lighting using internet of things. Indonesian J. Electr. Eng. Comput. Sci. 26(2), 639–647 (2022). https://doi.org/10.11591/ijeecs.v26.i2

    Article  Google Scholar 

  25. Guidelines for photovoltaic installation on net energy metering scheme_energy_Malaysia_commission_Registration Record (2019)

    Google Scholar 

  26. C.D. Rodriguez-Gallegos, O. Gandhi, D. Yang, M.S. Alvarez-Alvarado, W. Zhang, T. Reindl, S.K. Panda, A siting and sizing optimization approach for PV-battery-diesel hybrid systems. IEEE Trans. Ind. Appl. 54(3), 2637–2645 (2018). https://doi.org/10.1109/TIA.2017.2787680

    Article  Google Scholar 

  27. V. Vijayan, A. Mohapatra, S.N. Singh, C.L. Dewangan, An efficient modular optimization scheme for unbalanced active distribution networks with uncertain EV and PV penetrations. IEEE Trans. Smart Grid, pp. 1–1 (2023). https://doi.org/10.1109/TSG.2023.3234551

Download references

Acknowledgements

This work was supported by DTE Network+, funded by EPSRC, grant reference EP/S032053/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jahangir Hossain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hossain, J., Marzband, M., Saeed, N., Kalam, A., Hossain, M.A., Manojkumar, R. (2024). Optimal Sizing Capacities of Solar Photovoltaic and Battery Energy Storage Systems for Grid-Connected Commercial Buildings in Malaysia. In: Zhao, J., Kadam, S., Yu, Z., Li, X. (eds) IGEC Transactions, Volume 1: Energy Conversion and Management. IAGE 2023. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-031-48902-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48902-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48901-3

  • Online ISBN: 978-3-031-48902-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics