Skip to main content

Tunable UWB Metasurface Absorber for Smart City Compatible IoT Applications

  • Conference paper
  • First Online:
Cognitive Computing and Cyber Physical Systems (IC4S 2023)

Abstract

This work presents an ultra-wideband tunable graphene-based metasurface absorber for the terahertz (THz) gap region of the electromagnetic (EM) spectrum. The proposed absorber provides an absorption bandwidth (BW) of 7.8 THz (fractional BW = 195%) with absorptivity A(f) \(\ge \) 90%, i.e., from 0.1 to 7.9 THz. The impedance matching between free space and the absorber’s surface has been achieved by engraving different shapes of slots on the top graphene layer. The working principle behind the UWB absorption mechanism has also been studied with the help of parametric studies and field plots. The thickness of the metasurface is only 2 \(\upmu \)m, i.e., \(\lambda _g\)/958.3, where \(\lambda _g\) has been computed at 0.1 THz, thus, maintaining the ultra-thin nature required for the metasurface design in the THz regime. The absorber’s periodicity is also quite less, i.e., 6 \(\upmu \)m (\(\lambda _g\)/319.43), which is sufficient to achieve an effective homogeneity condition. The four-fold symmetry in the design makes the structure polarization insensitive to the incoming plane wave. The metasurface also works well for a wide incidence angle (\(\theta \)) under both transverse electric (TE) and transverse magnetic (TM) polarizations. The A(f) \(\ge \) 80% has been achieved for \(\theta \) up to 45\(^\circ \). In addition, the absorber provides full-width at half-maxima (FWHM) BW in the complete frequency range, i.e., from 0.1 to 7.9 THz. Hence, the proposed metasurface absorber is found suitable for suppressing/absorbing unwanted electromagnetic radiation in a close indoor environment for smart city-enabled Internet of Things (IoT) applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Da Silva, I.N., Flauzino, R.A.: Smart Cities Technologies, 1st edn. Intechopen, London (2016)

    Book  Google Scholar 

  2. Pareek, P., Maurya, N.K., Singh, L., Gupta, N., Reis, M.J.C.S.: Study of smart city compatible monolithic quantum well photodetector. In: Gupta, N., Pareek, P., Reis, M. (eds.) IC4S 2022. LNCS, SITE, vol. 472, pp. 215–224. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-28975-0_18

    Chapter  Google Scholar 

  3. Iqbal, A., Olariu, S.: A survey of enabling technologies for smart communities. Smart Cities 4(1), 54–77 (2020)

    Article  Google Scholar 

  4. Bellini, P., Pantaleo, G.: Special issue on the internet of things (IoT) in smart cities (2023)

    Google Scholar 

  5. Rafiq, I., Mahmood, A., Razzaq, S., Jafri, S.H.M., Aziz, I.: IoT applications and challenges in smart cities and services. J. Eng. 2023(4), e12262 (2023)

    Article  Google Scholar 

  6. Maurya, N.K., Bhattacharya, R.: Design of compact dual-polarized multiband MIMO antenna using near-field for IoT. AEU-Int. J. Electron. Commun. 117, 153091 (2020)

    Article  Google Scholar 

  7. Maurya, N.K., Bhattacharya, R.: CPW-fed dual-band compact Yagi-type pattern diversity antenna for LTE and WiFi. Prog. Electromagn. Res. C 107, 183–201 (2021)

    Article  Google Scholar 

  8. Sisinni, E., Saifullah, A., Han, S., Jennehag, U., Gidlund, M.: Industrial internet of things: challenges, opportunities, and directions. IEEE Trans. Industr. Inf. 14(11), 4724–4734 (2018)

    Article  Google Scholar 

  9. Maurya, N.K., Ghosh, J., Sumithra, P.: Design of graphene-based tunable ultra-thin UWB metasurface for terahertz regime. Optik, 170753 (2023)

    Google Scholar 

  10. Ghosh, S.K., Das, S., Bhattacharyya, S.: Graphene based metasurface with near unity broadband absorption in the terahertz gap. Int. J. RF Microwave Comput. Aided Eng. 30(12), e22436 (2020)

    Article  Google Scholar 

  11. Yadav, V.S., Kaushik, B.K., Patnaik, A.: Broadband THz absorber for large inclination angle TE and TM waves. IEEE Photonics J. 13(5), 1–7 (2021)

    Article  Google Scholar 

  12. Lv, Y., Liu, W., Tian, J., Yang, R.: Broadband terahertz metamaterial absorber and modulator based on hybrid graphene-gold pattern. Physica E 140, 115142 (2022)

    Article  Google Scholar 

  13. Zakir, S., et al.: Polarization-insensitive, broadband, and tunable terahertz absorber using slotted-square graphene meta-rings. IEEE Photonics J. 15(1), 1–8 (2022)

    Article  MathSciNet  Google Scholar 

  14. Shen, H., et al.: Multi-band plasmonic absorber based on hybrid metal-graphene metasurface for refractive index sensing application. Results Phys. 23, 104020 (2021)

    Article  MathSciNet  Google Scholar 

  15. Khan, M.S., Giri, P., Varshney, G.: Generating multiple resonances in ultrathin silicon for highly selective THz biosensing. Physica Scripta 97(8), 085009 (2022)

    Google Scholar 

  16. Shalini, V.B.: A polarization insensitive miniaturized pentaband metamaterial THz absorber for material sensing applications. Opt. Quant. Electron. 53, 1–14 (2021)

    Article  Google Scholar 

  17. Shabani, M., Karimi, G.: Compact single-band and multiband terahertz plasmonic absorbers using hybrid graphene-metal resonators with switching and modulation capability. Optik, 171010 (2023)

    Google Scholar 

  18. Amiri, M., Tofigh, F., Shariati, N., Lipman, J., Abolhasan, M.: Review on metamaterial perfect absorbers and their applications to IoT. IEEE Internet Things J. 8(6), 4105–4131 (2020)

    Article  Google Scholar 

  19. Tonouchi, M.: Cutting-edge terahertz technology. Nat. Photonics 1(2), 97–105 (2007)

    Article  Google Scholar 

  20. Farooq, M.S., Nadir, R.M., Rustam, F., Hur, S., Park, Y., Ashraf, I.: Nested bee hive: a conceptual multilayer architecture for 6G in futuristic sustainable smart cities. Sensors 22(16), 5950 (2022)

    Article  Google Scholar 

  21. Niu, M.: Intelligent Electronics and Circuits: Terahertz, Its, and Beyond, 1st edn. Intechopen, London (2022)

    Book  Google Scholar 

  22. Maurya, N.K., Kumari, S., Pareek, P., Singh, L.: Graphene-based frequency agile isolation enhancement mechanism for MIMO antenna in terahertz regime. Nano Commun. Netw. 100436 (2023)

    Google Scholar 

  23. Ram, G.C., Sambaiah, P., Yuvaraj, S., Kartikeyan, M.: Graphene based tunable bandpass filter for terahertz spectroscopy of polymers. Optik 268, 169792 (2022)

    Article  Google Scholar 

  24. Ram, G.C., Sambaiah, P., Yuvaraj, S., Kartikeyan, M.: Tunable bandstop filter using graphene in terahertz frequency band. AEU-Int. J. Electron. Commun. 144, 154047 (2022)

    Article  Google Scholar 

  25. Neto, A.C., Guinea, F., Peres, N.M., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Pareek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maurya, N.K., Kumari, S., Pareek, P., Ghosh, J., Reis, M.J.C.S. (2024). Tunable UWB Metasurface Absorber for Smart City Compatible IoT Applications. In: Pareek, P., Gupta, N., Reis, M.J.C.S. (eds) Cognitive Computing and Cyber Physical Systems. IC4S 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 537. Springer, Cham. https://doi.org/10.1007/978-3-031-48891-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48891-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48890-0

  • Online ISBN: 978-3-031-48891-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics