Skip to main content

The Best of Both Worlds: Analytically-Guided Simulation of HPnGs for Optimal Reachability

  • Conference paper
  • First Online:
Performance Evaluation Methodologies and Tools (VALUETOOLS 2023)

Abstract

Efficient reachability analysis, as well as statistical model checking have been proposed for the evaluation of Hybrid Petri nets with general transitions (HPnG). Both have different (dis-)advantages. The performance of statistical simulation suffers in large models and the number of required simulation runs to achieve a relatively small confidence interval increases considerably. The approach introduced for analytical reachability analysis of HPnGs however, becomes infeasible for a large number of random variables. To overcome these limitations, this paper applies statistical simulation for optimal reachability defined as until property in Stochastic Time Logic to a pre-computed symbolic state-space representation of HPnGs, i.e., the Parametric Location Tree (PLT), which has previously been used for model checking HPnGs. A case study on a water tank model shows the feasiblity of the approach and illustrates its advantages w.r.t. the original simulation and analysis approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://zivgitlab.uni-muenster.de/ag-sks/tools/hpnmg/-/tree/simulation.

References

  1. Abate, A., Katoen, J.P., Lygeros, J., Prandini, M.: Approximate model checking of stochastic hybrid systems. Eur. J. Control. 16(6), 624–641 (2010). https://doi.org/10.3166/ejc.16.624-641

    Article  MathSciNet  Google Scholar 

  2. Adelt, J., Herber, P., Niehage, M., Remke, A.: Towards safe and resilient hybrid systems in the presence of learning and uncertainty. In: Leveraging Applications of Formal Methods, Verification and Validation. Verification Principles—11th International Symposium, ISoLA 2022, Rhodes, Greece, October 22–30, 2022, Proceedings, Part I. LNCS, vol. 13701, pp. 299–319. Springer (2022). https://doi.org/10.1007/978-3-031-19849-6_18

  3. Budde, C.E., D’Argenio, P.R., Hartmanns, A.: Better automated importance splitting for transient rare events. In: Dependable Software Engineering. Theories, Tools, and Applications, LNCS, vol. 10606, pp. 42–58. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-69483-2_3

  4. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: An efficient statistical model checker for nondeterminism and rare events. Int. J. Softw. Tools Technol. Transfer 22(6), 759–780 (2020). https://doi.org/10.1007/s10009-020-00563-2

    Article  Google Scholar 

  5. Cai, M., Peng, H., Li, Z., Kan, Z.: Learning-based probabilistic LTL motion planning with environment and motion uncertainties. IEEE Trans. Autom. Control 66(5), 2386–2392 (2021). https://doi.org/10.1109/TAC.2020.3006967

    Article  MathSciNet  Google Scholar 

  6. David, R., Alla, H.: Discrete, Continuous, and Hybrid Petri Nets. Springer, Berlin Heidelberg, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-10669-9

  7. Delicaris, J., Schupp, S., Ábrahám, E., Remke, A.: Maximizing reachability probabilities in rectangular automata with random clocks. In: 17th International Symposium on Theoretical Aspects of Software Engineering. LNCS, vol. 13931, pp. 1–19. Springer (2023). https://doi.org/10.1007/978-3-031-35257-7_10

  8. D’Argenio, P., Legay, A., Sedwards, S., Traonouez, L.M.: Smart sampling for lightweight verification of Markov decision processes. Int. J. Softw. Tools Technol. Transfer 17(4), 469–484 (2015). https://doi.org/10.1007/s10009-015-0383-0

    Article  Google Scholar 

  9. D’Argenio, P.R., Gerhold, M., Hartmanns, A., Sedwards, S.: A hierarchy of scheduler classes for stochastic automata. In: Foundations of Software Science and Computation Structures, LNCS, vol. 10803, pp. 384–402. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-89366-2_21

  10. D’Argenio, P.R., Hartmanns, A., Sedwards, S.: Lightweight statistical model checking in nondeterministic continuous time. In: Leveraging Applications of Formal Methods, Verification and Validation. Verification, LNCS, vol. 11245, pp. 336–353. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-030-03421-4_22

  11. Ellen, C., Gerwinn, S., Fränzle, M.: Statistical model checking for stochastic hybrid systems involving nondeterminism over continuous domains. Int. J. Softw. Tools Technol. Transfer 17(4), 485–504 (2015). https://doi.org/10.1007/s10009-014-0329-y

    Article  Google Scholar 

  12. Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability and safety verification for stochastic hybrid systems. In: Proceedings of the 14th International Conference on Hybrid Systems: Computation and Control—HSCC ’11. p. 43. ACM Press, Chicago, IL, USA (2011). https://doi.org/10.1145/1967701.1967710

  13. Fränzle, M., Teige, T., Eggers, A.: Engineering constraint solvers for automatic analysis of probabilistic hybrid automata. J. Logic Algebraic Program. 79(7), 436–466 (2010). https://doi.org/10.1016/j.jlap.2010.07.003

  14. Gao, Y., Fränzle, M.: A solving procedure for stochastic satisfiability modulo theories with continuous domain. In: 12th International Conference on Quantitative Evaluation of Systems (QEST). LNCS, vol. 9259, pp. 295–311. Springer (2015). https://doi.org/10.1007/978-3-319-22264-6_19

  15. Ghasemieh, H., Remke, A., Haverkort, B.R.: Survivability evaluation of fluid critical infrastructures using hybrid petri nets. In: IEEE 19th Pacific Rim International Symposium on Dependable Computing, PRDC 2013, Vancouver, BC, Canada, December 2–4, 2013, pp. 152–161. IEEE Computer Society (2013). https://doi.org/10.1109/PRDC.2013.34

  16. Ghasemieh, H., Remke, A., Haverkort, B.R.: Survivability analysis of a sewage treatment facility using hybrid petri nets. Perform. Evaluation 97, 36–56 (2016). https://doi.org/10.1016/j.peva.2015.11.004

    Article  Google Scholar 

  17. Gribaudo, M., Remke, A.: Hybrid Petri nets with general one-shot transitions. Perform. Eval. 105, 22–50 (2016). https://doi.org/10.1016/j.peva.2016.09.002

    Article  Google Scholar 

  18. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional modelling and analysis framework for stochastic hybrid systems. Formal Methods Syst. Des. 43(2), 191–232 (2013). https://doi.org/10.1007/s10703-012-0167-z

    Article  Google Scholar 

  19. Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Faithful and effective reward schemes for model-free reinforcement learning of omega-regular objectives. In: Automated Technology for Verification and Analysis, LNCS, vol. 12302, pp. 108–124. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6_6

  20. Hartmanns, A., Hermanns, H.: The modest toolset: an integrated environment for quantitative modelling and verification. In: Tools and Algorithms for the Construction and Analysis of Systems, LNCS, vol. 8413, pp. 593–598. Springer, Berlin Heidelberg, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_51

  21. Hartmanns, A., Hermanns, H., Krčál, J.: Schedulers are no Prophets. In: Semantics, Logics, and Calculi, LNCS, vol. 9560, pp. 214–235. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-27810-0_11

  22. Hasanbeig, M., Kantaros, Y., Abate, A., Kroening, D., Pappas, G.J., Lee, I.: Reinforcement learning for temporal logic control synthesis with probabilistic satisfaction guarantees. In: 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 5338–5343. IEEE, Nice, France (2019). https://doi.org/10.1109/CDC40024.2019.9028919

  23. Hasanbeig, M., Abate, A., Kroening, D.: Cautious reinforcement learning with logical constraints. In: Proceedings of the 19th International Conference on Autonomous Agents and Multiagent Systems, pp. 483–491 (2020)

    Google Scholar 

  24. Heymann, M., Feng Lin, Meyer, G., Resmerita, S.: Analysis of Zeno behaviors in a class of hybrid systems. IEEE Trans. Autom. Control 50(3), 376–383 (2005). https://doi.org/10.1109/TAC.2005.843874

  25. Hüls, J., Remke, A.: Model checking hpngs in multiple dimensions: Representing state sets as convex polytopes. In: Formal Techniques for Distributed Objects, Components, and Systems—39th IFIP WG 6.1 International Conference, FORTE 2019, Held as Part of the 14th International Federated Conference on Distributed Computing Techniques, DisCoTec 2019, Kongens Lyngby, Denmark, June 17–21, 2019, Proceedings. LNCS, vol. 11535, pp. 148–166. Springer (2019). https://doi.org/10.1007/978-3-030-21759-4_9

  26. Hüls, J., Niehaus, H., Remke, A.: hpnmg: AC++ tool for model checking hybrid Petri nets with general transitions. In: NASA Formal Methods, LNCS, vol. 12229, pp. 369–378. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-55754-6_22

  27. Hüls, J., Pilch, C., Schinke, P., Niehaus, H., Delicaris, J., Remke, A.: State-space construction of hybrid Petri nets with multiple stochastic firings. ACM Trans. Model. Comput. Simul. 31(3), 1–37 (2021). https://doi.org/10.1145/3449353

    Article  MathSciNet  Google Scholar 

  28. Jegourel, C., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., Sedwards, S.: Importance sampling for stochastic timed automata. In: Dependable Software Engineering: Theories, Tools, and Applications, LNCS, vol. 9984, pp. 163–178. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-47677-3_11

  29. Laurenti, L., Lahijanian, M., Abate, A., Cardelli, L., Kwiatkowska, M.: Formal and efficient synthesis for continuous-time linear stochastic hybrid processes. IEEE Trans. Autom. Control 66(1), 17–32 (2021). https://doi.org/10.1109/TAC.2020.2975028. Jan

    Article  MathSciNet  Google Scholar 

  30. Legay, A., Sedwards, S., Traonouez, L.M.: Scalable verification of Markov decision processes. In: Software Engineering and Formal Methods, LNCS, vol. 8938, pp. 350–362. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-15201-1_23

  31. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998). https://doi.org/10.1145/272991.272995

    Article  Google Scholar 

  32. Niehage, M., Hartmanns, A., Remke, A.: Learning optimal decisions for stochastic hybrid systems. In: Proceedings of the 19th ACM-IEEE International Conference on Formal Methods and Models for System Design, pp. 44–55. ACM, Virtual Event China (2021). https://doi.org/10.1145/3487212.3487339

  33. Niehage, M., Pilch, C., Remke, A.: Simulating Hybrid Petri nets with general transitions and non-linear differential equations. In: Proceedings of the 13th EAI International Conference on Performance Evaluation Methodologies and Tools, pp. 88–95. ACM, Tsukuba Japan (2020). https://doi.org/10.1145/3388831.3388842

  34. Niehage, M., Remke, A.: Learning that grid-convenience does not hurt resilience in the presence of uncertainty. In: Formal Modeling and Analysis of Timed Systems—20th International Conference, FORMATS 2022, Warsaw, Poland, September 13–15, 2022, Proceedings. LNCS, vol. 13465, pp. 298–306. Springer (2022). https://doi.org/10.1007/978-3-031-15839-1_17

  35. Pilch, C., Edenfeld, F., Remke, A.: HYPEG: Statistical model checking for hybrid Petri nets: tool paper. In: Proceedings of the 11th EAI International Conference on Performance Evaluation Methodologies and Tools—VALUETOOLS 2017, pp. 186–191. ACM Press, Venice, Italy (2017). https://doi.org/10.1145/3150928.3150956

  36. Pilch, C., Hartmanns, A., Remke, A.: Classic and non-prophetic model checking for Hybrid Petri nets with stochastic firings. In: Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control, pp. 1–11. ACM, Sydney New South Wales Australia (2020). https://doi.org/10.1145/3365365.3382198

  37. Pilch, C., Krause, M., Remke, A., Ábrahám, E.: A transformation of Hybrid Petri nets with stochastic firings into a subclass of stochastic hybrid automata. In: NASA Formal Methods, LNCS, vol. 12229, pp. 381–400. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-55754-6_23

  38. Pilch, C., Niehage, M., Remke, A.: HPnGs go non-linear: statistical dependability evaluation of battery-powered systems. In: 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 157–169. IEEE, Milwaukee, WI (2018). https://doi.org/10.1109/MASCOTS.2018.00024

  39. Pilch, C., Remke, A.: Statistical model checking for Hybrid Petri nets with multiple general transitions. In: 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 475–486. IEEE, Denver, CO, USA (2017). https://doi.org/10.1109/DSN.2017.41

  40. Pilch, C., Schupp, S., Remke, A.: Optimizing reachability probabilities for a restricted class of stochastic hybrid automata via Flowpipe-construction. In: Quantitative Evaluation of Systems, LNCS, vol. 12846, pp. 435–456. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-85172-9_23

  41. Sadigh, D., Kim, E.S., Coogan, S., Sastry, S.S., Seshia, S.A.: A learning based approach to control synthesis of Markov decision processes for linear temporal logic specifications. In: 53rd IEEE Conference on Decision and Control, pp. 1091–1096. IEEE, Los Angeles, CA, USA (2014). https://doi.org/10.1109/CDC.2014.7039527

  42. Shmarov, F., Zuliani, P.: ProbReach: verified probabilistic delta-reachability for stochastic hybrid systems. In: Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control, pp. 134–139. ACM, Seattle Washington (Apr 2015). https://doi.org/10.1145/2728606.2728625

  43. Shmarov, F., Zuliani, P.: Probabilistic hybrid systems verification via SMT and Monte Carlo techniques. In: Hardware and Software: Verification and Testing, LNCS, vol. 10028, pp. 152–168. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-49052-6_10

  44. da Silva, C., Schupp, S., Remke, A.: Optimizing reachability probabilities for a restricted class of stochastic hybrid automata via flowpipe-construction. ACM Trans. Model. Comput. Simul. (2023). https://doi.org/10.1145/3607197

    Article  Google Scholar 

  45. Zimmermann, A., Maciel, P.: Importance function derivation for RESTART simulations of Petri nets. In: 9th International Workshop on Rare Event Simulation (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathis Niehage .

Editor information

Editors and Affiliations

A Visual Representation of the Tank Model

A Visual Representation of the Tank Model

Fig. 2.
figure 2

Tank system modeled as HPnG as in [32]. The continuous place \(P_{\text {tank}}^c\) models the fluid level of the tank. The two valves are modeled by the continuous transitions \(T^C_{\text {valve}\_1}\) and \(T^C_{\text {valve}\_2}\), which are enabled while a token is in \(P^d_{1\_\text {on}}\) respectively \(P^d_{2\_\text {on}}\). The nondeterministic choice is modeled by the conflict of the immediate transitions \(T^I_{\text {start}\_1}\) and \(T^I_{\text {start}\_2}\) if a token is in \(P^d_{\text {choice}}\).

Fig. 3.
figure 3

Tank system modeled as singular automaton with random clocks [40]. The fluid level of the tank is modeled by the variable x. The nondeterministic choice is highlighted. The active time for the two valves is given by the clocks \(c_1\) and \(c_2\). Additionally the random blocking times for the valves are modeled by the random clocks \(r_1\) and \(r_2\).

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Niehage, M., Remke, A. (2024). The Best of Both Worlds: Analytically-Guided Simulation of HPnGs for Optimal Reachability. In: Kalyvianaki, E., Paolieri, M. (eds) Performance Evaluation Methodologies and Tools. VALUETOOLS 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 539. Springer, Cham. https://doi.org/10.1007/978-3-031-48885-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48885-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48884-9

  • Online ISBN: 978-3-031-48885-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics