Skip to main content

Segment Visibility for k-Transmitters

  • Conference paper
  • First Online:
Algorithmics of Wireless Networks (ALGOWIN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14061))

Included in the following conference series:

  • 113 Accesses

Abstract

Given a simple polygon P and a segment e of P, we define the terms completely k-visible, strongly k-visible, and weakly k-visible with respect to P. Two points x and y are said to be k-visible when the line segment xy intersects the boundary of the polygon at most k times. If all of P is k-visible to all of e, then P is completely k-visible from e, but if the entirety of P is k-visible from a subset of e, then P is strongly k-visible from e. Conversely, if e can only see all of P through a set of disjoint intervals, then e is weakly visible. We propose two methods to determine whether P is completely, and strongly k-visible. We also develop an algorithm to calculate the weakly k-visible part of P from e in \(O(kn^4)\) time complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Avis, D., Toussaint, G.T.: An optimal algorithm for determining the visibility of a polygon from an edge. IEEE Trans. Comput. C-30, 910–914 (1981)

    Google Scholar 

  2. Bahoo, Y., Bose, P., Durocher, S.: Watchtower for k-crossing visibility. In: CCCG (2019)

    Google Scholar 

  3. Bahoo, Y., Bose, P., Durocher, S., Shermer, T.C.: Computing the k-visibility region of a point in a polygon. Theory Comput. Syst. 64, 1292–1306 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bahoo, Y., Khorasani, A.M., Eskandari, M., Sorouri, M.: 2-modem pursuit-evasion problem. In: EuroCG (2013)

    Google Scholar 

  5. Biedl, T., et al.: Guarding orthogonal art galleries with sliding k-transmitters: hardness and approximation. Algorithmica 81, 69–97 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Biedl, T., Mehrabi, S., Yu, Z.: Sliding k-transmitters: hardness and approximation. arXiv preprint arXiv:1607.07364 (2016)

  7. Cannon, S., Fai, T.G., Iwerks, J., Leopold, U., Schmidt, C.: Combinatorics and complexity of guarding polygons with edge and point 2-transmitters. Comput. Geom. 68, 89–100 (2018)

    Google Scholar 

  8. Chvátal, V.: A combinatorial theorem in plane geometry. J. Comb. Theory Seri. B 18, 39–41 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dean, J.A., Lingas, A., Sack, J.R.: Recognizing polygons, or how to spy. Visual Comput. 3, 344–355 (1988)

    Article  MATH  Google Scholar 

  10. Evans, W., Sember, J.: k-star-shaped polygons. In: CCCG, pp. 215–218 (2010)

    Google Scholar 

  11. Fung, K.Y., Nicholl, T.M., Tarjan, R.E., Van Wyk, C.J.: Simplified linear-time Jordan sorting and polygon clipping. Inf. Process. Lett. 35(2), 85–92 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.: Linear time algorithms for visibility and shortest path problems inside simple polygons. In: Proceedings of the Second Annual Symposium on Computational Geometry, pp. 1–13 (1986)

    Google Scholar 

  13. Lee, D., Lin, A.: Computing the visibility polygon from an edge. Comput. Vision Graph. Image Process. 34, 1–19 (1986)

    Article  MATH  Google Scholar 

  14. Mahdavi, S.S., Seddighin, S., Ghodsi, M.: Covering orthogonal polygons with sliding k-transmitters. Theor. Comput. Sci. 815, 163–181 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Monroy, R.F., Vargas, A.R., Fucugauchi, J.U.: On modem illumination problems. In: XIII Encuentros de Geometría Computacional: Zaragoza, del 29 de junio al 1 de julio de 2009, pp. 9–19. Prensas Universitarias de Zaragoza (2009)

    Google Scholar 

  16. Mouawad, N., Shermer, T.: The superman problem. Visual Comput. 10, 459–473 (1994)

    Article  Google Scholar 

  17. Suri, S., O’Rourke, J.: Worst-case optimal algorithms for constructing visibility polygons with holes. In: Proceedings of the Second Annual Symposium on Computational Geometry, pp. 14–23 (1986)

    Google Scholar 

  18. Zomorodian, A., Edelsbrunner, H.: Fast software for box intersections. In: Proceedings of the Sixteenth Annual Symposium on Computational Geometry, pp. 129–138 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeganeh Bahoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bahoo, Y., Kundu, S., Manastyrski, K. (2023). Segment Visibility for k-Transmitters. In: Georgiou, K., Kranakis, E. (eds) Algorithmics of Wireless Networks. ALGOWIN 2023. Lecture Notes in Computer Science, vol 14061. Springer, Cham. https://doi.org/10.1007/978-3-031-48882-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48882-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48881-8

  • Online ISBN: 978-3-031-48882-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics