Abstract
Given a simple polygon P and a segment e of P, we define the terms completely k-visible, strongly k-visible, and weakly k-visible with respect to P. Two points x and y are said to be k-visible when the line segment xy intersects the boundary of the polygon at most k times. If all of P is k-visible to all of e, then P is completely k-visible from e, but if the entirety of P is k-visible from a subset of e, then P is strongly k-visible from e. Conversely, if e can only see all of P through a set of disjoint intervals, then e is weakly visible. We propose two methods to determine whether P is completely, and strongly k-visible. We also develop an algorithm to calculate the weakly k-visible part of P from e in \(O(kn^4)\) time complexity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Avis, D., Toussaint, G.T.: An optimal algorithm for determining the visibility of a polygon from an edge. IEEE Trans. Comput. C-30, 910–914 (1981)
Bahoo, Y., Bose, P., Durocher, S.: Watchtower for k-crossing visibility. In: CCCG (2019)
Bahoo, Y., Bose, P., Durocher, S., Shermer, T.C.: Computing the k-visibility region of a point in a polygon. Theory Comput. Syst. 64, 1292–1306 (2020)
Bahoo, Y., Khorasani, A.M., Eskandari, M., Sorouri, M.: 2-modem pursuit-evasion problem. In: EuroCG (2013)
Biedl, T., et al.: Guarding orthogonal art galleries with sliding k-transmitters: hardness and approximation. Algorithmica 81, 69–97 (2019)
Biedl, T., Mehrabi, S., Yu, Z.: Sliding k-transmitters: hardness and approximation. arXiv preprint arXiv:1607.07364 (2016)
Cannon, S., Fai, T.G., Iwerks, J., Leopold, U., Schmidt, C.: Combinatorics and complexity of guarding polygons with edge and point 2-transmitters. Comput. Geom. 68, 89–100 (2018)
Chvátal, V.: A combinatorial theorem in plane geometry. J. Comb. Theory Seri. B 18, 39–41 (1975)
Dean, J.A., Lingas, A., Sack, J.R.: Recognizing polygons, or how to spy. Visual Comput. 3, 344–355 (1988)
Evans, W., Sember, J.: k-star-shaped polygons. In: CCCG, pp. 215–218 (2010)
Fung, K.Y., Nicholl, T.M., Tarjan, R.E., Van Wyk, C.J.: Simplified linear-time Jordan sorting and polygon clipping. Inf. Process. Lett. 35(2), 85–92 (1990)
Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.: Linear time algorithms for visibility and shortest path problems inside simple polygons. In: Proceedings of the Second Annual Symposium on Computational Geometry, pp. 1–13 (1986)
Lee, D., Lin, A.: Computing the visibility polygon from an edge. Comput. Vision Graph. Image Process. 34, 1–19 (1986)
Mahdavi, S.S., Seddighin, S., Ghodsi, M.: Covering orthogonal polygons with sliding k-transmitters. Theor. Comput. Sci. 815, 163–181 (2020)
Monroy, R.F., Vargas, A.R., Fucugauchi, J.U.: On modem illumination problems. In: XIII Encuentros de Geometría Computacional: Zaragoza, del 29 de junio al 1 de julio de 2009, pp. 9–19. Prensas Universitarias de Zaragoza (2009)
Mouawad, N., Shermer, T.: The superman problem. Visual Comput. 10, 459–473 (1994)
Suri, S., O’Rourke, J.: Worst-case optimal algorithms for constructing visibility polygons with holes. In: Proceedings of the Second Annual Symposium on Computational Geometry, pp. 14–23 (1986)
Zomorodian, A., Edelsbrunner, H.: Fast software for box intersections. In: Proceedings of the Sixteenth Annual Symposium on Computational Geometry, pp. 129–138 (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bahoo, Y., Kundu, S., Manastyrski, K. (2023). Segment Visibility for k-Transmitters. In: Georgiou, K., Kranakis, E. (eds) Algorithmics of Wireless Networks. ALGOWIN 2023. Lecture Notes in Computer Science, vol 14061. Springer, Cham. https://doi.org/10.1007/978-3-031-48882-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-48882-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-48881-8
Online ISBN: 978-3-031-48882-5
eBook Packages: Computer ScienceComputer Science (R0)