Skip to main content

Study of Welded Joint Failure at Negative Temperature

  • Conference paper
  • First Online:
Advances in Mechanical Engineering (MMESE 2023)

Abstract

An experimental-computational study of the strength of welded samples with a crack-like defect under conditions of negative climatic temperatures has been carried out in the current work. A brittle fracture model of a part with a crack has been presented. A finite element analysis of the stress-strain state of the samples has been performed. It has been presented that the test results do not contradict the fracture model. The model evaluates the lower limit of the strength of the part with a crack-like concentrator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xian-Kui Zhu, Joyce, J.A. Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization. EFM 85, 1–46 (2012)

    Google Scholar 

  2. Barsom, J.M., Rolfe, S.T.: Fracture and fatigue control in structures: applications of fracture mechanics. ASTM International, Third Edition. ASTM (1999)

    Google Scholar 

  3. Matvienko, Y.G.: Models and criteria of fracture mechanics.—M.–PHYSMATHLIT,—328 c (2006)

    Google Scholar 

  4. Tanabe, Y.: Fracture toughness for brittle fracture of elastic and plastic materials. Mater. Trans. 54(3), 314–318 (2013)

    Article  Google Scholar 

  5. Bazant, Z.P., Jirasek, M.: Nonlocal integral formulations of plasticity and damage: survey of progress. J. Eng. Mech. 11, 1119–1149 (2002)

    Article  Google Scholar 

  6. Rabczuk, T.: Computational methods for fracture in brittle and quasi-brittle solids: state-of-the-art review and future perspectives. Appl. Math. (2013). https://doi.org/10.1155/2013/849231

    Article  MathSciNet  Google Scholar 

  7. Palombo, M., Sandon, S., de Marco, M.: An evaluation of size effect in CTOD-SENB fracture toughness test. Procedia Eng. 109, 55–64 (2015)

    Article  Google Scholar 

  8. Clayton, J.D., Knap, J.: A geometrically nonlinear phase field theory of brittle fracture. Int. J. Fract. (2014). https://doi.org/10.1007/s10704-014-9965-1

    Article  Google Scholar 

  9. Kornev, V.M.: Generalized sufficient strength criterion. Description of the pre-fracture zone. J. Appl. Mech. Tech. Phys.43, 153–161 (2002)

    Google Scholar 

  10. Taylor, D.: The theory of critical distances applied to the prediction of brittle fracture in metallic materials. SID. 2, 145–154 (2005)

    Google Scholar 

  11. Armstrong, R.W.: Material grain size and crack size influences on cleavage fracturing. Phil. Trans R Soc. 373(2038), 20140124 (2015)

    Article  Google Scholar 

  12. Matvienko Y.G. Trends in nonlinear fracture mechanics in mechanical engineering problems.—M.–Izhevsk: Computer Research Institute, 2015. — p. 56

    Google Scholar 

  13. Sibilyov, A.V., Mishin, V.M.: Determination of the criterion of cold fracture of steel samples based on the criterion of local destruction. Fundam. Res. Techn. Sci. Series. No 4, 843–847 (2013)

    Google Scholar 

  14. Kryzhevich, G.B.: Integral criteria of destruction in numerical calculations of low-temperature strength of marine engineering structures. Proceedings of the Krylov State Scientific Center, no. (383).—pp. 29–42 (2018). DOI: https://doi.org/10.24937/2542-2324-2018-1-383-29-42

  15. Kopel’man, L.A.: Fundamentals of the theory of strength of welded structures.—SPb.: «Lan’».—p 464 (2010)

    Google Scholar 

  16. Sokolov, S.A.: Criteria for the operability of metal structures. Design using FEM. SPb.: Strata, 2023, p. 202 (2023)

    Google Scholar 

  17. Sokolov, S.A., Tulin, D.E.: Mathematical model of brittle fracture of a cracked part. ISSN 1029–9599. Phys. Mesomech. 25(1), 72–79 (2022)

    Google Scholar 

  18. Sokolov, S., Tulin, D., Vasiliev, I.: Investigation of the size of the fracture process zone and the cleavage stress in cracked steel parts. Fatigue Fract. Eng. Mater. Struct. 46(3), 1159–1169 (2023). doi.org/https://doi.org/10.1111/ffe.13927

  19. Sokolov, S.A., Vasil’ev, I.A., Tulin, D.E.: Estimation of the increase in the yield strength of building steels at negative temperatures. Russian Metallurgy (Metally), 2022(4), 396–399 (2022)

    Google Scholar 

  20. Belikov S.B., Shevchenko, V.G., Ryagin, S.L.: Influence of temperature and strain rate on mechanical properties of steels used in crane construction. –Zaporozhye. Bull. STU «XПI» 43(1016),. 32–36 (2013)

    Google Scholar 

  21. Solntsev, Y.P., Ermakov, B.S., Sleptsov, O.I.: Materials for low and cryogenic temperatures: Encyclopedic reference book.—SPb.: KHIMIZDAT, p. 768 (2008)

    Google Scholar 

  22. Wang, Y.Q., Liao, X.W., Zhang, Y.Y., Shi, Y.J.: Experimental study on the through-thickness properties of structural steel thick plate and its heat-affected zone at low temperatures. J. Zhejiang Univ.-SC A. 16(3), 217–228 (2015)

    Article  Google Scholar 

  23. Sokolov, S.A., Tulin, D.E.: Modeling of elastoplastic stress states in crack tip regions. Phys. Mesomech. 24(3), 237–242 (2021)

    Google Scholar 

  24. Plotnikov, D.G.: Methodology for predicting the strength of welded steel structures of machines, considering the influence of low climatic temperatures. Thesis … PhD in Engineering sciences: 05.02.02./ Plotnikov D. G. –SPb. г.—p. 123 (2016)

    Google Scholar 

  25. The phenomenon of anisotropy of the resistance to the microscope of carbon steel pre-deformed by compression. S. A. Kotrechko, A.V. Kucher, Y. A (Eds.). Polushkin and etc. Strength problems, № 6, pp. 91–102 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey Andreevich Grachev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sokolov, S.A., Grachev, A.A. (2024). Study of Welded Joint Failure at Negative Temperature. In: Evgrafov, A.N. (eds) Advances in Mechanical Engineering. MMESE 2023. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-48851-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48851-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48850-4

  • Online ISBN: 978-3-031-48851-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics