Skip to main content

Shale Gas Reservoir Characterization: Understanding the Shale Types and Storage Mechanisms for Effective Exploration and Production

  • Chapter
  • First Online:
Unconventional Shale Gas Exploration and Exploitation

Part of the book series: Advances in Oil and Gas Exploration & Production ((AOGEP))

  • 117 Accesses


Shale gas refers to the natural gas trapped within shale formations, which are fine-grained sedimentary rocks rich in petroleum and natural gas resources. It exists in shale rocks as either free gas or adsorbed gas, resulting from the thermal alteration of kerogen, an insoluble organic matter. Shale acts as both the source and reservoir rock for shale gas. When the hydrocarbon generated inside the shale cannot be expelled to the reservoir rock, the shale itself becomes the reservoir. Various factors influence the gas generation and accumulation processes, including the extent and thickness of the shale layer, total organic carbon content, kerogen type, maturity, permeability, mineralogy, and brittleness versus ductility. Although shale rocks serve as both the source and reservoir, the extraction of shale gas requires hydraulic fracturing techniques such as acidization, propane injection, CO2 fracturing, and other methods. The exploration of shale reservoirs involves assessing total organic content, porosity, micro-fractures, and the geometry of porous spaces. Therefore, integrated studies encompassing geological, geochemical, petro-physical, geophysical, geomechanical, and technical aspects are necessary to identify optimal areas for shale gas exploration, exploitation, and recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  • Ahmad, M. (2014). Petrophysical and Mineralogical Evaluation of Shale Gas Reservoirs (A Cooper Basin Case Study). Master Thesis, January, 214.

    Google Scholar 

  • Aird, P. (2019). Deepwater Geology & Geoscience. In Deepwater Drilling (pp. 17–68). Elsevier.

  • Alam, J., Gogoi, T., & Chatterjee, R. (2021). Geomechanical characterization of subsurface formations with stress rotation in Assam Gap, Northeast India. Journal of Earth System Science, 130(3).

  • Arwini, S. (2016). Hydraulic Fracturing Technique to Improve Well Productivity and Oil Recovery in Deep Libyan Sandstone Reservoir Seismic History Matching Project View project Hydraulic Fracturing Technique to Improve Well Productivity and Oil Recovery in Deep Libyan Sandstone Reservoir (Vol. 1).

  • Athy, L. F. (1930). American Association of Petroleum Geologists Density, Porosity, and Compaction Of Sedimentary Rocks’ (Vol. 14, Issue 1).

    Google Scholar 

  • Bai, B., Sun, Y., & Liu, L. (2016). Petrophysical properties characterization of Ordovician Utica gas shale in Quebec, Canada. Petroleum Exploration and Development, 43(1), 74–81.

  • Barati, R., & Liang, J. T. (2014). A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells. Journal of Applied Polymer Science, 131(16), 1–11.

  • Bjørlykke, K. (2015). Compaction of sedimentary rocks: Shales, sandstones and carbonates. In Petroleum Geoscience: From Sedimentary Environments to Rock Physics, Second Edition (pp. 351–360). Springer Berlin Heidelberg.

  • Boruah, A., & Ganapathi, S. (2015). Microstructure and pore system analysis of Barren Measures shale of Raniganj field, India. Journal of Natural Gas Science and Engineering, 26, 427–437.

  • Boruah, A., Rasheed, A., Mendhe, V. A., & Ganapathi, S. (2019). Specific surface area and pore size distribution in gas shales of Raniganj Basin, India. Journal of Petroleum Exploration and Production Technology, 9(2), 1041–1050.

  • Bustin, R. M., Bustin, A. M. M., Ross, D. J. K., Canada, S., & Pathi, V. S. M. (2008a). SPE 119892 Impact of Shale Properties on Pore Structure and Storage Characteristics.

  • Bustin, R. M., Bustin, A. M. M., Ross, D. J. K., Canada, S., & Pathi, V. S. M. (2008b). SPE 119892 Impact of Shale Properties on Pore Structure and Storage Characteristics.

  • Butt, A. S. (2012). Shale Characterization Using X-Ray Diffraction.

    Google Scholar 

  • Cai, B., Wang, X., & Jiang, T. (2007). Application of liquid CO2 fracturing technology in coalbed methane. Natural Gas Technology, 1(5), 40–42.

    Google Scholar 

  • Chandra, D., Bakshi, T., Bahadur, J., Hazra, B., Vishal, V., Kumar, S., Sen, D., & Singh, T. N. (2023). Pore morphology in thermally-treated shales and its implication on CO2 storage applications: A gas sorption, SEM, and small-angle scattering study. Fuel, 331.

  • Chopra, S., Sharma, R. K., Keay, J., & Marfurt, K. J. (2012). Shale gas reservoir characterization workflows. Society of Exploration Geophysicists International Exposition and 82nd Annual Meeting 2012, SEG 2012, 1054–1058.

  • Chutia, A., Sarma, J. N., Assistant, R., & Malaviya, K. D. (2013). Indian Journal of Applied Research X 77 A Study on Geochemical Composition and Source Area Weathering of the Tipam Sandstones from a Few Oil Fields of Upper Assam Basin, India (Issue 8).

    Google Scholar 

  • Donaldson, E., Alam, W., & Begum, N. (2014). Hydraulic fracturing explained: evaluation, implementation, and challenges: Elsevier. Houston.

    Google Scholar 

  • Dong, T., & Harris, N. B. (2020). The effect of thermal maturity on porosity development in the Upper Devonian–Lower Mississippian Woodford Shale, Permian Basin, US: Insights into the role of silica nanospheres and microcrystalline quartz on porosity preservation. International Journal of Coal Geology, 217.

  • Dong, T., Harris, N. B., McMillan, J. M., Twemlow, C. E., Nassichuk, B. R., & Bish, D. L. (2019). A model for porosity evolution in shale reservoirs: An example from the Upper Devonian Duvernay Formation, Western Canada Sedimentary Basin. AAPG Bulletin, 103(5), 1017–1044.

  • El Nady, M. M., & Hammad, M. M. (2015). Organic richness, kerogen types and maturity in the shales of the Dakhla and Duwi formations in Abu Tartur area, Western Desert, Egypt: Implication of Rock–Eval pyrolysis. Egyptian Journal of Petroleum, 24(4), 423–428.

  • Fan, C., Yan, J., Huang, Y., Han, X., & Jiang, X. (2015). XRD and TG-FTIR study of the effect of mineral matrix on the pyrolysis and combustion of organic matter in shale char. Fuel, 139, 502–510.

  • Farajzadeh, R., Andrianov, A., Bruining, H., & Zitha, P. L. J. (2009). Comparative study of CO2 and N2 foams in porous media at low and high pressure-temperatures. Industrial and Engineering Chemistry Research, 48(9), 4542–4552.

  • Fertl, W. H., Atlas Rieke III, D. H., Virginia, W. U., & Inc, T. (1980). Gamma Ray Spectral Evaluation Techniques Identify Fractured Shale Reservoirs and Source-Rock Characteristics.

    Google Scholar 

  • Gandossi, L. (2013a). An overview of hydraulic fracturing and other formation stimulation technologies for shale gas production. In JRC Technical Reports (Issue EUR 26347 EN).

  • Gandossi, L. (2013b). An overview of hydraulic fracturing and other formation stimulation technologies for shale gas production. Publications Office of the European Union.

    Google Scholar 

  • Ghosh, S., Ojha, A., & Varma, A. K. (2022). Geochemical signatures of potassium metasomatism in anthracite from the Himalayan fold-thrust belts of Sikkim, India. International Journal of Coal Science and Technology, 9(1).

  • Grathoff, G. H., Peltz, M., Enzmann, F., & Kaufhold, S. (2016). Porosity and permeability determination of organic-rich Posidonia shales based on 3-D analyses by FIB-SEM microscopy. Solid Earth, 7(4), 1145–1156.

  • Gu, Y., Ding, W., Yin, S., Yin, M., & Xiao, Z. (2018). Adsorption characteristics of clay minerals in shale. Petroleum Science and Technology, 36(2), 108–114.

  • Guo, Y., Zhang, K., & Marfurt, K. J. (n.d.). Seismic attribute illumination of Woodford Shale faults and fractures, Arkoma Basin, OK.

    Google Scholar 

  • Gupta, N., Sarkar, S., & Marfurt, K. J. (2013). Seismic attribute driven integrated characterization of the Woodford Shale in west-central Oklahoma. Interpretation, 1(2), SB85–SB96.

  • Harding2, T. P., & Lowell^, J. D. (1979). Structural Styles, Their Plate-Tectonic Habitats, and Hydrocarbon Traps In Petroleum Provinces^ (Issue 7).

    Google Scholar 

  • Hawkins, A. B., & Pinches, G. M. (1992). Engineering description of mudrocks. In Quarterly Journal of Engineering Geology (Vol. 25).

  • Hayashi, K.-I., Fujisawa, H., Holland, H. D., & Ohmoto, H. (1997). Geochemistry of ~ 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. In Geochimica et Cosmochimica Acta (Vol. 61, Issue 19).

    Google Scholar 

  • Hazarika, S., & Boruah, A. (2021). Supercritical CO2 (SCO2) as alternative to water for shale reservoir fracturing. Materials Today: Proceedings, 50, 1754–1757.

  • Hazarika, S., Boruah, A., & Kumar, H. (2023). Study of pore structure of shale formation for CO2 storage. Materials Today: Proceedings.

  • Hazarika, S., Boruah, A., & Saraf, S. (2023). Modeling and simulation study of CO2 fracturing technique for shale gas productivity: a case study (India). Arabian Journal of Geosciences, 16(7), 408.

  • Hazarika, S., Singh, A., & Desai, B. G. (2019). Characterization and identification of petrophysical parameters of Shales from Jhuran Formation, Kachchh Basin, India. ASEG Extended Abstracts, 2019(1), 1–3.

  • Hazra, B., Varma, A. K., Bandopadhyay, A. K., Chakravarty, S., Buragohain, J., Samad, S. K., & Prasad, A. K. (2016). FTIR, XRF, XRD and SEM characteristics of Permian shales, India. Journal of Natural Gas Science and Engineering, 32, 239–255.

  • Hill, R. J., Zhang, E., Katz, B. J., & Tang, Y. (2007). Modeling of gas generation from the Barnett Shale, Fort Worth Basin, Texas. American Association of Petroleum Geologists Bulletin, 91(4), 501–521.

  • Hu, H., Hao, F., Lin, J., Lu, Y., Ma, Y., & Li, Q. (2017). Organic matter-hosted pore system in the Wufeng-Longmaxi (O3w-S11) shale, Jiaoshiba area, Eastern Sichuan Basin, China. International Journal of Coal Geology, 173(August), 40–50.

  • Huang, H., Li, R., Jiang, Z., Li, J., & Chen, L. (2020). Investigation of variation in shale gas adsorption capacity with burial depth: Insights from the adsorption potential theory. Journal of Natural Gas Science and Engineering, 73(July 2019), 103043.

  • Ibad, S. M., & Padmanabhan, E. (2022). Lithofacies, mineralogy, and pore types in Paleozoic gas shales from Western Peninsular Malaysia. Journal of Petroleum Science and Engineering, 212.

  • In Formation Depositional Sedimentary Environments (Formation of sedimentary rocks) Definition Review of General Concepts. (n.d.).

    Google Scholar 

  • Jiang, Z., Zhang, W., Liang, C., Wang, Y., Liu, H., & Chen, X. (2017). Basic characteristics and evaluation of shale oil reservoirs.

    Google Scholar 

  • Josh, M., Esteban, L., Delle Piane, C., Sarout, J., Dewhurst, D. N., & Clennell, M. B. (2012). Laboratory characterisation of shale properties. Journal of Petroleum Science and Engineering, 88–89, 107–124.

  • Kala, S., Devaraju, J., Tiwari, D. M., Rasheed, M. A., & Lakhan, N. (2021). Organic petrology and geochemistry of Early Permian shales from the Krishna-Godavari Basin, India: Implications for Gondwana palaeoenvironment and climate. Geological Journal, 56(11), 5621–5641.

  • Kala, S., Turlapati, V. Y., Devaraju, J., Rasheed, M. A., Sivaranjanee, N., & Ravi, A. (2021). Impact of sedimentary environment on pore parameters of thermally mature Permian shale: A study from Kommugudem Formation of Krishna Godavari Basin, India. Marine and Petroleum Geology, 132(March), 105236.

  • Kamali, M. R., & Mirshady, A. A. (2004). Total organic carbon content determined from well logs using ΔLogR and Neuro Fuzzy techniques. Journal of Petroleum Science and Engineering, 45(3–4), 141–148.

  • Kar, N. R., Mani, D., Mukherjee, S., Dasgupta, S., Puniya, M. K., Kaushik, A. K., Biswas, M., & Babu, E. V. S. S. K. (2022). Source rock properties and kerogen decomposition kinetics of Eocene shales from petroliferous Barmer basin, western Rajasthan, India. Journal of Natural Gas Science and Engineering, 100.

  • Kim, K., Ju, S., Ahn, J., Shin, H., Shin, C., & Choe, J. (2015). Determination of key parameters and hydraulic fracture design for shale gas productions. In Proceedings of the Twenty-Fifth International Ocean and Polar Engineering Conference.

    Google Scholar 

  • Klaja, J., & Dudek, L. (2016). Geological interpretation of spectral gamma ray (SGR) logging in selected boreholes. Nafta-Gaz, 72(1), 3–14.

  • Kudapa, V. K., Sharma, P., Kunal, V., & Gupta, • D K. (n.d.). Modeling and simulation of gas flow behavior in shale reservoirs.

  • Kuila, U., & Prasad, M. (2013a). Specific surface area and pore-size distribution in clays and shales. Geophysical Prospecting, 61(2), 341–362.

  • Kurtulus, C., Bozkurt, A., & Endes, H. (2012). Physical and mechanical properties of Serpentinized ultrabasic rocks in NW Turkey. Pure and Applied Geophysics, 169(7), 1205–1215.

  • LaFollette, R. F., & Hurt, R. S. (2016). Hydraulic fracturing. Fossil Fuels: Current Status and Future Directions, 229–288.

  • Lash, G. G., & Blood, D. R. (2004). Origin of Shale Fabric by Mechanical Compaction of Flocculated Clay: Evidence from the Upper Devonian Rhinestreet Shale, Western New York, U.S.A. In Journal of Sedimentary Research (Vol. 74, Issue 1). SEPM (Society for Sedimentary Geology.

    Google Scholar 

  • Lecampion, B., Desroches, J., Jeffrey, R. G., & Bunger, A. P. (2017). Experiments versus theory for the initiation and propagation of radial hydraulic fractures in low-permeability materials. Journal of Geophysical Research: Solid Earth, 122(2), 1239–1263.

  • Liu, C., Zhao, C. D., Liang, X., Yang, S., & Wang, G. (2018). The Role of Geophysics in the Shale Gas Geology and Engineering Integration. International Geophysical Conference, Beijing, China, 24–27 April 2018, 1529–1532.

  • Løseth, H., Wensaas, L., Gading, M., Duffaut, K., & Springer, M. (2011). Can hydrocarbon source rocks be identified on seismic data? Geology, 39(12), 1167–1170.

  • Loucks, R. G., Reed, R. M., Ruppel, S. C., & Jarvie, D. M. (2009). Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the mississippian barnett shale. Journal of Sedimentary Research, 79(12), 848–861.

  • Lüning, S., & Kolonic, S. (2003). Uranium Spectral Gamma-Ray Response as a Proxy for Organic Richness in Black Shales: Applicability and Limitations. In Journal of Petroleum Geology (Vol. 26, Issue 2).

    Google Scholar 

  • Macht, F., Eusterhues, K., Pronk, G. J., & Totsche, K. U. (2011). Specific surface area of clay minerals: Comparison between atomic force microscopy measurements and bulk-gas (N2) and -liquid (EGME) adsorption methods. Applied Clay Science, 53(1), 20–26.

  • Mahoney, C., März, C., Buckman, J., Wagner, T., & Blanco-Velandia, V. O. (2019). Pyrite oxidation in shales: Implications for palaeo-redox proxies based on geochemical and SEM-EDX evidence. Sedimentary Geology, 389, 186–199.

  • Matthew J. Mavor; Timothy J. Pratt; Charles R. Nelson; Tom Ann Casey. (1996). Improved Gas-In-Place Determination for Coal Gas Reservoirs . Paper Presented at the SPE Gas Technology Symposium, Calgary, Alberta, Canada, April 1996.

    Google Scholar 

  • Matthias Thommes*, Katsumi Kaneko, Alexander V. Neimark, James P. Olivier, F. R.-R., & Sing, J. R. and K. S. W. (2013). Brunauer-Emmett-Teller (BET) surface area analysis. Pure and Applied Chemistry, 87(9–10), 1051–1069.

  • Michel, G. G., Sigal, R. F., Civan, F., & Devegowda, D. (2011). Parametric investigation of shale gas production considering nano-scale pore size distribution, formation factor, and non-darcy flow mechanisms. Proceedings - SPE Annual Technical Conference and Exhibition, 6, 4471–4490.

  • Montgomery, C. T., & Smith, M. B. (2010). Hydraulic fracturing: History of an enduring technology. In JPT, Journal of Petroleum Technology (Vol. 62, Issue 12, pp. 26–32). Society of Petroleum Engineers.

  • Moore, C. H., & Wade, W. J. (2013). Natural fracturing in carbonate reservoirs. In Developments in Sedimentology (Vol. 67, pp. 285–300). Elsevier B.V.

  • Moore, W. R., Zee Ma, Y., Urdea, J., & Bratton, T. (2011). Uncertainty analysis in well-log and petrophysical interpretations. AAPG Memoir, 96, 17–28.

  • Möri, A., & Lecampion, B. (2021). Arrest of a radial hydraulic fracture upon shut-in of the injection. In International Journal of Solids and Structures (Vols. 219–220, pp. 151–165).

  • Mroczkowska-Szerszeń, M., Ziemianin, K., Brzuszek, P., Matyasik, I., & Jankowski, L. (2015). The organic matter type in the shale rock samples assessed by FTIR-ATR analyses. Nafta-Gaz, 06(June), 361–369.

  • Muktadir, G., Amro, M., Kummer, N., Freese, C., & Abid, K. (2021). Application of x-ray diffraction (Xrd) and rock–eval analysis for the evaluation of middle eastern petroleum source rock. Energies, 14(20), 1–16.

  • Ogiesoba, O., & Hammes, U. (2014). Seismic-attribute identification of brittle and TOC-rich zones within the Eagle Ford Shale, Dimmit County, South Texas. Journal of Petroleum Exploration and Production Technology, 4(2), 133–151.

  • Okeke, O. C., & Okogbue, C. O. (2011a). Shales: A Review of their Classifications, Properties and Importance to the Petroleum Industry. In Global Journal of Geological Sciences (Vol. 9, Issue 1).

  • Okeke, O. C., & Okogbue, C. O. (2011b). Shales: A Review of their Classifications, Properties and Importance to the Petroleum Industry. In Global Journal of Geological Sciences (Vol. 9, Issue 1).

  • Pan, B., Li, Y., Zhang, M., Wang, X., & Iglauer, S. (2020). Effect of total organic carbon (TOC) content on shale wettability at high pressure and high temperature conditions. Journal of Petroleum Science and Engineering, 193.

  • Qian, Y., Guo, P., Wang, Y., Zhao, Y., Lin, H., & Liu, Y. (2020a). Advances in Laboratory-Scale Hydraulic Fracturing Experiments. Advances in Civil Engineering, 2020(1).

  • Qian, Y., Guo, P., Wang, Y., Zhao, Y., Lin, H., & Liu, Y. (2020b). Advances in Laboratory-Scale Hydraulic Fracturing Experiments. Adv. Civ. Eng.

  • Qian, Y., Guo, P., Wang, Y., Zhao, Y., Lin, H., & Liu, Y. (2020c). Advances in Laboratory-Scale Hydraulic Fracturing Experiments. 2020(1).

    Google Scholar 

  • Quirein, J., Praznik, G., Galford, J., Chen, S., Murphy, E., & Witkowsky, J. (2013). A workflow to evaluate mineralogy, porosity, TOC, and hydrocarbon volume in the Eagle Ford Shale. Society of Petroleum Engineers - Asia Pacific Unconventional Resources Conference and Exhibition 2013: Delivering Abundant Energy for a Sustainable Future, 1, 189–205.

  • Rabbani, A., & Babaei, M. (2021). Image-based modeling of carbon storage in fractured organic-rich shale with deep learning acceleration. Fuel, 299(February), 120795.

  • Rackley, S. A. (2017). Geochemical and biogeochemical features, events, and processes. Carbon Capture and Storage, 365–386.

  • Ross, D. J. K., & Marc Bustin, R. (2009). The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Marine and Petroleum Geology, 26(6), 916–927.

  • Ruessink, B. H., & Harville, D. G. (1992). Quantitative analysis of bulk mineralogy. The applicability and performance of XRD and FTIR. 533–546.

  • Rutqvist, J., Rinaldi, A. P., Cappa, F., & Moridis, G. J. (2013). Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs. Journal of Petroleum Science and Engineering, 107, 31–44.

  • Schieber, J. (2011). Marcasite in black shales - A mineral proxy for oxygenated bottom waters and intermittent oxidation of carbonaceous muds. Journal of Sedimentary Research, 81(7), 447–458.

  • Selen, L., Panthi, K. K., & Vistnes, G. (2020). An analysis on the slaking and disintegration extent of weak rock mass of the water tunnels for hydropower project using modified slake durability test. Bulletin of Engineering Geology and the Environment, 79(4), 1919–1937.

  • Shimizu, H., Murata, S., & Ishida, T. (2011). The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution. International Journal of Rock Mechanics and Mining Sciences, 48(5), 712–727.

  • Singh, A. K., & Chakraborty, P. P. (2021). Geochemistry and hydrocarbon source rock potential of shales from the Palaeo-Mesoproterozoic Vindhyan Supergroup, central India. Energy Geoscience, xxxx.

  • Singh, T. N., Verma, A. K., Singh, V., & Sahu, A. (2005). Slake durability study of shaly rock and its predictions. Environmental Geology, 47(2), 246–253.

  • Slatt, R. M. (2011). Important geological properties of unconventional resource shales. In Central European Journal of Geosciences (Vol. 3, Issue 4, pp. 435–448).

  • Snapshot, M., & Overview, M. (2021). Hydraulic Fracturing Market - Growth, Trends, COVID-19 Impact, and. 1–6.

    Google Scholar 

  • Sohail, G. M., Hawkes, C. D., & Yasin, Q. (2020). An integrated petrophysical and geomechanical characterization of Sembar Shale in the Lower Indus Basin, Pakistan, using well logs and seismic data. Journal of Natural Gas Science and Engineering, 78.

  • Stanisławek, S., Kȩdzierski, P., & Miedzińska, D. (2017). Laboratory Hydraulic Fracturing Tests of Rock Samples with Water, Carbon Dioxide, and Slickwater. Archives of Civil Engineering, 63(3), 139–148.

  • Tanykova, N., Petrova, Y., Kostina, J., Kozlova, E., Leushina, E., & Spasennykh, M. (2021). Study of organic matter of unconventional reservoirs by ir spectroscopy and ir microscopy. Geosciences (Switzerland), 11(7).

  • The Petroleum System Introduction and Definitions. (n.d.-a).

    Google Scholar 

  • Thickpenny, A. (n.d.). Palaeo-oceanography and Depositional Environment of the Scandinavian Alum Shales: Sedimentological and Geochemical Evidence.

    Google Scholar 

  • Thickpenny, A. (1984). The sedimentology of the Swedish Alum Shales. Geological Society, London, Special Publications, 15(1), 511–525.

  • Tian, L., Xiao, C., Liu, M., Gu, D., Song, G., Cao, H., & Li, X. (2014). Well testing model for multi-fractured horizontal well for shale gas reservoirs with consideration of dual diffusion in matrix. Journal of Natural Gas Science and Engineering, 21, 283–295.

  • Vermylen, J. (2011). Geomechanical studies of the Barnett shale. Stanford University.

    Google Scholar 

  • Wang, X., Gao, R., & Wu, J. (2013). Liquid CO2 fracturing technique for shale gas well.

    Google Scholar 

  • Wang, Z., Jiang, X., Pan, M., & Shi, Y. (2020). Nano-scale pore structure and its multi-fractal characteristics of tight sandstone by n2 adsorption/desorption analyses: A case study of shihezi formation from the sulige gas filed, ordos basin, china. In Minerals (Vol. 10, Issue 4).

  • Wanniarachchi, W. A. M., Ranjith, P. G., & Perera, M. S. A. (2017). Shale gas fracturing using foam-based fracturing fluid: a review. In Environmental Earth Sciences (Vol. 76, Issue 2, pp. 1–15). Springer Verlag.

  • Watton, T. J., Cannon, S., Brown, R. J., Jerram, D. A., & Waichel, B. L. (2014). Using formation micro-imaging, wireline logs and onshore analogues to distinguish volcanic lithofacies in boreholes: Examples from Palaeogene successions in the Faroe-Shetland Basin, NE Atlantic. Geological Society Special Publication, 397(1), 173–192.

  • Wotanie, L. V., Agyingi, C. M., Ayuk, N. E., Ngia, N. R., Anatole, D. L., & Eble, C. F. (2022). Petroleum source rock evaluation of organic black shales in the Paleogene N’kapa Formation, Douala Basin, Cameroon. Scientific African, 18.

  • Xu, Z., Shi, W., Zhai, G., Peng, N., & Zhang, C. (2020). Study on the characterization of pore structure and main controlling factors of pore development in gas shale. Journal of Natural Gas Geoscience, 5(5), 255–271.

  • Zhang, L. (2019a). Shale gas reservoir characteristics and microscopic flow mechanisms. In Developments in Petroleum Science (Vol. 66, pp. 1–47). Elsevier B.V.

  • Zhang, L. (2019b). Shale gas reservoir characteristics and microscopic flow mechanisms. In Developments in Petroleum Science (Vol. 66, pp. 1–47). Elsevier B.V.

  • Zhang, L. (2019c). Shale gas reservoir characteristics and microscopic flow mechanisms (Vol. 66, pp. 1–47).

  • Zhang, T., Ellis, G. S., Ruppel, S. C., Milliken, K., Lewan, M., & Sun, X. (2013). Effect of organic matter properties, clay mineral type and thermal maturity on gas adsorption in organic-rich shale systems. Unconventional Resources Technology Conference 2013, URTC 2013.

  • Zhang, T., Ellis, G. S., Ruppel, S. C., Milliken, K., & Yang, R. (2012). Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Organic Geochemistry, 47, 120–131.

  • Zhao, H., Wu, K., Huang, Z., Xu, Z., Shi, H., & Wang, H. (2021). Numerical model of CO2 fracturing in naturally fractured reservoirs. Engineering Fracture Mechanics, 244(January), 107548.

  • Zhao, J., Jin, Z., Jin, Z., Wen, X., Geng, Y., Yan, C., & Nie, H. (2017). Depositional environment of shale in Wufeng and Longmaxi Formations, Sichuan Basin. Petroleum Research, 2(3), 209–221.

  • Zhao, Q., Lisjak, A., Mahabadi, O., Liu, Q., & Grasselli, G. (2014). Numerical simulation of hydraulic fracturing and associated microseismicity using finite-discrete element method. Journal of Rock Mechanics and Geotechnical Engineering, 6(6), 574–581.

  • Zheng, A., Bao, H., Liu, L., Tu, M., Hu, C., & Yang, L. (2022a). Investigation of Multiscaled Pore Structure of Gas Shales using Nitrogen Adsorption and FE-SEM Imaging Experiments. Geofluids, 2022.

  • Zheng, H., Yang, F., Guo, Q., Pan, S., Jiang, S., & Wang, H. (2022). Multi-scale pore structure, pore network and pore connectivity of tight shale oil reservoir from Triassic Yanchang Formation, Ordos Basin. Journal of Petroleum Science and Engineering, 212(September 2021), 110283.

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Annapurna Boruah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S., Hazarika, S., Mitra, P., Boruah, A. (2024). Shale Gas Reservoir Characterization: Understanding the Shale Types and Storage Mechanisms for Effective Exploration and Production. In: Boruah, A., Verma, S., Ganguli, S.S. (eds) Unconventional Shale Gas Exploration and Exploitation. Advances in Oil and Gas Exploration & Production. Springer, Cham.

Download citation

Publish with us

Policies and ethics