Skip to main content

Building a Pipeline for Efficient Production of Synthetic Datasets for Improving RL in Automated Driving

  • Conference paper
  • First Online:
Proceedings of SIE 2023 (SIE 2023)

Abstract

Online deep reinforcement learning training poses challenges due to its length and instability, despite the development of learning algorithms targeted to overcome these issues. Offline learning has emerged as a potential solution, but it reintroduces the issue of dataset production, which is resource-consuming and challenging even in simulation environments. This paper investigates efficient dataset creation for offline learning in the context of automated driving. Our proposed solution is a pipeline based on the CARLA simulator, which offers a wide variety in terms of car models, weather conditions, and environments. The pipeline aims to produce high-quality datasets for pre-training, training, and fine-tuning models, targeting improved training speed and reduced divergence. By leveraging CARLA’s level of realism, we address the resource-intensive nature of dataset production, providing researchers and car manufacturers with a valuable tool for advancing the development of robust automated driving systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, Y.: Deep Reinforcement Learning: An Overview. http://arxiv.org/abs/1701.07274 (2018). https://doi.org/10.48550/arXiv.1701.07274

  2. Ghosh, D., Bellemare, M.G.: Representations for stable off-policy reinforcement learning. In: III, H.D., Singh, A. (eds.) Proceedings of the 37th International Conference on Machine Learning, pp. 3556–3565. PMLR (2020)

    Google Scholar 

  3. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal Policy Optimization Algorithms. http://arxiv.org/abs/1707.06347 (2017)

  4. Dankwa, S., Zheng, W.: Twin-delayed DDPG: a deep reinforcement learning technique to model a continuous movement of an intelligent robot agent. In: Proceedings of the 3rd International Conference on Vision, Image and Signal Processing, pp. 1–5. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3387168.3387199

  5. Lazzaroni, L., Bellotti, F., Capello, A., Cossu, M., De Gloria, A., Berta, R.: Deep reinforcement learning for automated car parking. In: Berta, R., De Gloria, A. (eds.) Applications in Electronics Pervading Industry, Environment and Society, pp. 125–130. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-30333-3_16

  6. Torabi, F., Warnell, G., Stone, P.: Behavioral Cloning from Observation. http://arxiv.org/abs/1805.01954 (2018). https://doi.org/10.48550/arXiv.1805.01954

  7. Levine, S., Kumar, A., Tucker, G., Fu, J.: Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems. http://arxiv.org/abs/2005.01643 (2020). https://doi.org/10.48550/arXiv.2005.01643

  8. Agarwal, R., Schuurmans, D., Norouzi, M.: An optimistic perspective on offline reinforcement learning. In: Proceedings of the 37th International Conference on Machine Learning, pp. 104–114. PMLR (2020)

    Google Scholar 

  9. Fang, X., Zhang, Q., Gao, Y., Zhao, D.: Offline reinforcement learning for autonomous driving with real world driving data. In: 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), pp. 3417–3422 (2022). https://doi.org/10.1109/ITSC55140.2022.9922100

  10. Kidambi, R., Rajeswaran, A., Netrapalli, P., Joachims, T.: MOReL: model-based offline reinforcement learning. In: Advances in Neural Information Processing Systems, pp. 21810–21823. Curran Associates, Inc. (2020)

    Google Scholar 

  11. Fu, J., Kumar, A., Nachum, O., Tucker, G., Levine, S.: D4RL: Datasets for Deep Data-Driven Reinforcement Learning. http://arxiv.org/abs/2004.07219 (2021)

  12. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: An Open Urban Driving Simulator. http://arxiv.org/abs/1711.03938 (2017). https://doi.org/10.48550/arXiv.1711.03938

  13. Cossu, M., Berta, R., Capello, A., De Gloria, A., Lazzaroni, L., Bellotti, F.: Developing a toolchain for synthetic driving scenario datasets. In: Berta, R., De Gloria, A. (eds.) Applications in Electronics Pervading Industry, Environment and Society. pp. 222–228. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-30333-3_29

  14. Motta, J., et al.: Developing a synthetic dataset for driving scenarios. In: Saponara, S., De Gloria, A. (eds.) Applications in Electronics Pervading Industry, Environment and Society, pp. 310–316. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-95498-7_43

  15. Krajzewicz, D., Hertkorn, G., Feld, C., Wagner, P.: SUMO (Simulation of Urban mobility); An open-source traffic simulation (2002)

    Google Scholar 

  16. Xu, R., Guo, Y., Han, X., Xia, X., Xiang, H., Ma, J.: OpenCDA: an open cooperative driving automation framework integrated with co-simulation. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 1155–1162 (2021). https://doi.org/10.1109/ITSC48978.2021.9564825

  17. Leurent, E.: An Environment for Autonomous Driving Decision-Making (2018). https://github.com/eleurent/highway-env

  18. Pighetti, A., et al.: High-level decision-making non-player vehicles. In: Kiili, K., Antti, K., De Rosa, F., Dindar, M., Kickmeier-Rust, M., Bellotti, F. (eds.) Games and Learning Alliance, pp. 223–233. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-22124-8_22

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Lazzaroni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lazzaroni, L., Pighetti, A., Bellotti, F., Berta, R. (2024). Building a Pipeline for Efficient Production of Synthetic Datasets for Improving RL in Automated Driving. In: Ciofi, C., Limiti, E. (eds) Proceedings of SIE 2023. SIE 2023. Lecture Notes in Electrical Engineering, vol 1113. Springer, Cham. https://doi.org/10.1007/978-3-031-48711-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48711-8_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48710-1

  • Online ISBN: 978-3-031-48711-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics