Skip to main content

Advances in Machine-Learning Based Disaggregation of Building Heating Loads: A Review

  • Conference paper
  • First Online:
Energy Informatics (EI.A 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14467))

Included in the following conference series:

  • 205 Accesses

Abstract

This review article investigates the methods proposed for disaggregating the space heating units’ load from the aggregate electricity load of commercial and residential buildings. It explores conventional approaches together with those that employ traditional machine learning, deep supervised learning and reinforcement learning. The review also outlines corresponding data requirements and examines the suitability of a commonly utilised toolkit for disaggregating heating loads from low-frequency aggregate power measurements. It is shown that most of the proposed approaches have been applied to high-resolution measurements and that few studies have been dedicated to low-resolution aggregate loads (e.g. provided by smart meters). Furthermore, only a few methods have taken account of special considerations for heating technologies, given the corresponding governing physical phenomena. Accordingly, the recommendations for future works include adding a rigorous pre-processing step, in which features inspired by the building physics (e.g. lagged values for the ambient conditions and values that represent the correlation between heating consumption and outdoor temperature) are added to the available input feature pool. Such a pipeline may benefit from deep supervised learning or reinforcement learning methods, as these methods are shown to offer higher performance compared to traditional machine learning algorithms for load disaggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. IEA (2022). https://www.iea.org/reports/buildings

  2. Energy Transitions Commission, ‘Making Mission Possible’, Health Prog. 76(6), 45–7, 60 (2020)

    Google Scholar 

  3. SSB, 11561: Energibalanse. Tilgang og forbruk, etter energiprodukt 1990 - 2018 (2020). https://www.ssb.no/statbank/table/11561. Accessed 02 Jun 2023

  4. Ødegården, L., Bhantana, S.: Status og prognoser for kraftsystemet 2018 rapportnr. 1032018. NVE (2018). http://publikasjoner.nve.no/rapport/2018/rapport2018_103.pdf. Accessed 31 May 2023

  5. NVE, NVE.no: Smarte strømmålere (AMS) (2022). https://www.nve.no/reguleringsmyndigheten/kunde/strom/stromkunde/smarte-stroemmaalere-ams/

  6. Lindberg, K.B.: Doctoral thesis Impact of Zero Energy Buildings on the Power System A study of load profiles, flexibility and Impact of Zero Energy Buildings on the Power System A study of load profiles , flexibility and system, vol. 6 (2017)

    Google Scholar 

  7. Carrie Armel, K., Gupta, A., Shrimali, G., Albert, A.: Is disaggregation the holy grail of energy efficiency? The case of electricity. Energy Policy 52, 213–234 (2013). https://doi.org/10.1016/j.enpol.2012.08.062

  8. Hart, G.W.: Nonintrusive appliance load monitoring. Proc. IEEE 80(12), 1870–1891, (1992). https://doi.org/10.1109/5.192069

  9. Huber, P., Calatroni, A., Rumsch, A., Paice, A.: Review on deep neural networks applied to low-frequency NILM. Energies 14(9), Art. no. 9, Jan. 2021. https://doi.org/10.3390/en14092390

  10. Zeifman, M., Roth, K.: Nonintrusive appliance load monitoring: Review and outlook. IEEE Trans. Consum. Electron. 57(1), 76–84 (2011). https://doi.org/10.1109/TCE.2011.5735484

    Article  Google Scholar 

  11. Makonin, S.: Approaches to Non-Intrusive Load Monitoring (NILM) in the Home APPROACHES TO NON-INTRUSIVE LOAD MONITORING (NILM) by Doctor of Philosophy School of Computing Science, no. October 2012, 2014

    Google Scholar 

  12. Kong, W., Dong, Z.Y., Hill, D.J., Luo, F., Xu, Y.: Improving nonintrusive load monitoring efficiency via a hybrid programing method. IEEE Trans. Ind. Inform. 12(6), 2148–2157 (2016). https://doi.org/10.1109/TII.2016.2590359

    Article  Google Scholar 

  13. Farinaccio, L., Zmeureanu, R.: Using a pattern recognition approach to disaggregate the total electricity consumption in a house into the major end-uses. Energy Build. 30(3), 245–259 (1999). https://doi.org/10.1016/S0378-7788(99)00007-9

    Article  Google Scholar 

  14. Figueiredo, M.B., De Almeida, A., Ribeiro, B.: An experimental study on electrical signature identification of non-intrusive load monitoring (NILM) systems. Lect. Notes Comput. Sci. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinforma., vol. 6594 LNCS, no. PART 2, pp. 31–40 (2011). https://doi.org/10.1007/978-3-642-20267-4_4

  15. Nguyen, K.T., et al.: Event detection and disaggregation algorithms for NIALM system. In: NILM Workshop, June 2014, pp. 2–5 (2014)

    Google Scholar 

  16. Gonçalves, H., Ocneanu, A., Bergés, M.: Unsupervised disaggregation of appliances using aggregated consumption data. Environ (2011)

    Google Scholar 

  17. Wang, L., Luo, X., Zhang, W.: Unsupervised energy disaggregation with factorial hidden Markov models based on generalized backfitting algorithm. In: EEE International Conference of IEEE Region 10 (TENCON 2013) (2013)

    Google Scholar 

  18. Egarter, D., Bhuvana, V.P., Elmenreich, W.: PALDi: online load disaggregation via particle filtering. IEEE Trans. Instrum. Meas. 64(2), 467–477 (2015). https://doi.org/10.1109/TIM.2014.2344373

    Article  Google Scholar 

  19. Wu, Q., Wang, F.: Concatenate convolutional neural networks for non-intrusive load monitoring across complex background. Energies 12(8) (2019). https://doi.org/10.3390/en12081572

  20. Kelly, J., et al.: NILMTK v0.2: a non-intrusive load monitoring toolkit for large scale datasets: demo abstract. In: Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings, in BuildSys ’14. Nov. 2014, pp. 182–183, Association for Computing Machinery, New York. https://doi.org/10.1145/2674061.2675024

  21. Batra, N., et al. Towards reproducible state-of-the-art energy disaggregation. In: Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, Nov. 2019, pp. 193–202. ACM, New York. https://doi.org/10.1145/3360322.3360844

  22. Virtsionis, N., Gkalinikis, C., Nalmpantis, Vrakas, D.: Torch-NILM: an effective deep learning toolkit for non-intrusive load monitoring in pytorch. Energies 15(7), Art. no. 7, Jan. 2022. https://doi.org/10.3390/en15072647

  23. Lindberg, K.B.: Impact of zero energy buildings on the power system, p. 192

    Google Scholar 

  24. Abbasi, A.R.: Fault detection and diagnosis in power transformers: a comprehensive review and classification of publications and methods. Electr. Power Syst. Res. 209, 107990 (2022). https://doi.org/10.1016/j.epsr.2022.107990

    Article  Google Scholar 

  25. Makonin, S., Ellert, B., Bajić, I.V., Popowich, F.: Electricity, water, and natural gas consumption of a residential house in Canada from 2012 to 2014. Sci. Data 3(1), Art. no. 1, Jun. 2016. https://doi.org/10.1038/sdata.2016.37

  26. Himeur, Y., Ghanem, K., Alsalemi, A., Bensaali, F., Amira, A.: Artificial intelligence based anomaly detection of energy consumption in buildings: a review, current trends and new perspectives. Appl. Energy 287, 116601 (2021). https://doi.org/10.1016/j.apenergy.2021.116601

    Article  Google Scholar 

  27. Himeur, Y., Alsalemi, A., Bensaali, F., Amira, A., Al-Kababji, A.: Recent trends of smart nonintrusive load monitoring in buildings: a review, open challenges, and future directions. Int. J. Intell. Syst.Intell. Syst. 37(10), 7124–7179 (2022). https://doi.org/10.1002/int.22876

    Article  Google Scholar 

  28. Angelis, G.-F., Timplalexis, C., Krinidis, S., Ioannidis, D., Tzovaras, D.: NILM applications: Literature review of learning approaches, recent developments and challenges. Energy Build. 261, 111951 (2022). https://doi.org/10.1016/j.enbuild.2022.111951

    Article  Google Scholar 

  29. Ruano, A., Hernandez, A., Ureña, J., Ruano, M., Garcia, J.: NILM techniques for intelligent home energy management and ambient assisted living: a review. Energies 12(11), Art. no. 11, January 2019. https://doi.org/10.3390/en12112203

  30. Batra, N., Gulati, M., Singh, A., Srivastava, M.B.: It’s Different: insights into home energy consumption in India. In: Proceedings of the 5th ACM Workshop on Embedded Systems for Energy-Efficient Buildings, in BuildSys’13. November 2013, pp. 1–8. Association for Computing Machinery, New York, November 2013. https://doi.org/10.1145/2528282.2528293

  31. Kelly, J., Knottenbelt, W.: The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes. Sci. Data 2(1), Art. no. 1, March 2015. https://doi.org/10.1038/sdata.2015.7

  32. ‘NILMTK: Non-Intrusive Load Monitoring Toolkit’. nilmtk, Feb. 27, 2023 . https://github.com/nilmtk/nilmtk. Accessed 28 Feb 2023

  33. Murray, D., Stankovic, L., Stankovic, V.: An electrical load measurements dataset of United Kingdom households from a two-year longitudinal study. Sci. Data 4(1), Art. no. 1, January 2017. https://doi.org/10.1038/sdata.2016.122

  34. Kolter, J.Z., Johnson, M.J.: REDD: A Public Dataset for Energy Disaggregation Research’

    Google Scholar 

  35. Beckel, C., Kleiminger, W., Cicchetti, R., Staake, T., Santini, S.: The ECO dataset and the performance of non-intrusive load monitoring algorithms. In: Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings, Memphis Tennessee: ACM, pp. 80–89, November 2014. https://doi.org/10.1145/2674061.2674064

  36. Klemenjak, C., Kovatsch, C., Herold, M., Elmenreich, W.: A synthetic energy dataset for non-intrusive load monitoring in households. Sci. Data 7(1), Art. no. 1, April 2020. https://doi.org/10.1038/s41597-020-0434-6

  37. Shin, C., Lee, E., Han, J., Yim, J., Rhee, W., Lee, H.: The ENERTALK dataset, 15 Hz electricity consumption data from 22 houses in Korea. Sci. Data 6(1), 193 (2019). https://doi.org/10.1038/s41597-019-0212-5

    Article  Google Scholar 

  38. Household Electricity Survey - Data Briefing

    Google Scholar 

  39. Medico, R., et al.: A voltage and current measurement dataset for plug load appliance identification in households. Sci. Data 7(1), Art. no. 1, February 2020. https://doi.org/10.1038/s41597-020-0389-7

  40. Anderson, K.D., Ocneanu, A.F., Benitez, D., Carlson, D., Rowe, A., Berges, M.: BLUED: a fully labeled public dataset for event-based non-intrusive load monitoring research, August 2023

    Google Scholar 

  41. Reinhardt, A., et al.: On the accuracy of appliance identification based on distributed load metering data, p. 9 (2012)

    Google Scholar 

  42. Maasoumy, M., Sanandaji, B.M., Poolla, K., Vincentelli, A.S.: BERDS-BERkeley EneRgy Disaggregation Dataset. https://tokhub.github.io/dbecd/links/berds.html. Accessed 24 Jan 2023

  43. Monacchi, A., Egarter, D., Elmenreich, W., D’Alessandro, S., Tonello, A.M.: GREEND: an energy consumption dataset of households in Italy and Austria. In: 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 511–516, November 2014. https://doi.org/10.1109/SmartGridComm.2014.7007698

  44. Uttama Nambi, A.S.N., Reyes Lua, A., Prasad, V.R.: LocED: location-aware energy disaggregation framework. In: Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments, Seoul South Korea: ACM, pp. 45–54, November 2015. https://doi.org/10.1145/2821650.2821659

  45. Parson, O., et al.: Dataport and NILMTK: a building dataset designed for non-intrusive load monitoring. In: 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Orlando, FL, USA: IEEE, pp. 210–214, December 2015. https://doi.org/10.1109/GlobalSIP.2015.7418187

  46. Makonin, S., Wang, Z.J., Tumpach, C.: RAE: the rainforest automation energy dataset for smart grid meter data analysis. Data 3(1), 8 (2018). https://doi.org/10.3390/data3010008

    Article  Google Scholar 

  47. Rashid, H., Singh, P., Singh, A.: I-BLEND, a campus-scale commercial and residential buildings electrical energy dataset. Sci. Data 6(1), Art. no. 1, February 2019. https://doi.org/10.1038/sdata.2019.15

  48. Basu, K., Debusschere, V., Bacha, S.: Residential appliance identification and future usage prediction from smart meter. In: IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, pp. 4994–4999, November 2013. https://doi.org/10.1109/IECON.2013.6699944

  49. Barker, S., Mishra, A., Irwin, D., Cecchet, E., Shenoy, P., Albrecht, J.: Smart*: an open dataset and tools for enabling research in sustainable homes. In: Proceedings of SustKDD, January 2012

    Google Scholar 

  50. Batra, N., Parson, O., Berges, M., Singh, A., Rogers, A.: A comparison of non-intrusive load monitoring methods for commercial and residential buildings (2014)

    Google Scholar 

  51. Sæle, H., Rosenberg, E., Feilberg, N.: State-of-the-art Projects for estimating the electricityu end-use demand (2010). Accessed 20 Mar 2023. https://www.sintef.no/globalassets/project/eldek/publisering/tr-a6999-state-of-the-art-projects-for-estimating-the-electricity-end-use-demand.pdf

  52. Andersen, K.H., Krekling Lien, S., Byskov Lindberg, K., Taxt Walnum, H., Sartori, I.: Further development and validation of the “PROFet” energy demand load profiles estimator. In: presented at the 2021 Building Simulation Conference, September 2021. https://doi.org/10.26868/25222708.2021.30159

  53. Schaffer, M., Tvedebrink, T., Marszal-Pomianowska, A.: Three years of hourly data from 3021 smart heat meters installed in Danish residential buildings. Sci. Data 9(1), Art. no. 1, July 2022. https://doi.org/10.1038/s41597-022-01502-3

  54. Liu, L., et al.: Non-intrusive load monitoring method considering the time-segmented state probability. IEEE Access 10, 39627–39637 (2022). https://doi.org/10.1109/ACCESS.2022.3167132

    Article  Google Scholar 

  55. Balletti, M., Piccialli, V., Sudoso, A.M.: Mixed-integer nonlinear programming for state-based non-intrusive load monitoring. IEEE Trans. Smart Grid 13(4), 3301–3314 (2022). https://doi.org/10.1109/TSG.2022.3152147

    Article  Google Scholar 

  56. Morch, A., Sæle, H., Feilberg, N., Lindberg, K.B.: Method for development and segmentation of load profiles for different final customers and appliances. In: ECEEE 2013 Summer Stud. Proc., 2013, Accessed: Mar. 20, 2023. https://www.eceee.org/library/conference_proceedings/eceee_Summer_Studies/2013/7-monitoring-and-evaluation/method-for-development-and-segmentation-of-load-profiles-for-different-final-customers-and-appliances/

  57. Lien, S.K., Ivanko, D., Sartori, I.: Domestic hot water decomposition from measured total heat load in Norwegian buildings. SINTEF Academic Press, 2020. Accessed: Jan. 17, 2023. https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2684373

  58. Zaeri, N., Gunay, H.B., Ashouri, A.: Unsupervised energy disaggregation using time series decomposition for commercial buildings. In: Proceedings of the 9th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, Boston Massachusetts: ACM, pp. 373–377, November 2022. https://doi.org/10.1145/3563357.3566155

  59. Amayri, M., Silva, C.S., Pombeiro, H., Ploix, S.: Flexibility characterization of residential electricity consumption: A machine learning approach. Sustain. Energy Grids Netw. 32, 100801 (2022)

    Article  Google Scholar 

  60. Najafi, B., Di Narzo, L., Rinaldi, F., Arghandeh, R.: Machine learning based disaggregation of air-conditioning loads using smart meter data. IET Gener. Transm. Distrib.Distrib. 14(21), 4755–4762 (2020). https://doi.org/10.1049/iet-gtd.2020.0698

    Article  Google Scholar 

  61. Miller, C., Meggers, F.: Mining electrical meter data to predict principal building use, performance class, and operations strategy for hundreds of non-residential buildings. Energy Build. 156, 360–373 (2017). https://doi.org/10.1016/j.enbuild.2017.09.056

    Article  Google Scholar 

  62. Kaselimi, M., Doulamis, N., Doulamis, A., Voulodimos, A., Protopapadakis, E.: Bayesian-optimized bidirectional LSTM regression model for non-intrusive load monitoring. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, United Kingdom: IEEE, pp. 2747–2751, May 2019. https://doi.org/10.1109/ICASSP.2019.8683110

  63. Xia, M., Liu, W., Wang, K., Song, W., Chen, C., Li, Y.: Non-intrusive load disaggregation based on composite deep long short-term memory network. Expert Syst. Appl. 160, 113669 (2020). https://doi.org/10.1016/j.eswa.2020.113669

    Article  Google Scholar 

  64. Wang, J., El Kababji, S., Graham, C., Srikantha, P.: Ensemble-based deep learning model for non-intrusive load monitoring. In: 2019 IEEE Electrical Power and Energy Conference (EPEC), pp. 1–6, October 2019. https://doi.org/10.1109/EPEC47565.2019.9074816

  65. Davies, P., Dennis, J., Hansom, J., Martin, W., Stankevicius, A., Ward, L.: Deep neural networks for appliance transient classification. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2019, pp. 8320–8324. doi: https://doi.org/10.1109/ICASSP.2019.8682658

  66. Li, C., Zheng, R., Liu, M., Zhang, S.: A fusion framework using integrated neural network model for non-intrusive load monitoring. In: 2019 Chinese Control Conference (CCC), Guangzhou, China: IEEE, pp. 7385–7390, July 2019. https://doi.org/10.23919/ChiCC.2019.8865721

  67. Wang, T.S., Ji, T.Y., Li, M.S.: A new approach for supervised power disaggregation by using a denoising autoencoder and recurrent LSTM network. In: 2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Toulouse, France: IEEE, pp. 507–512, August 2019. https://doi.org/10.1109/DEMPED.2019.8864870

  68. Harell, A., Makonin, S., Bajic, I.V.: Wavenilm: a causal neural network for power disaggregation from the complex power signal. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, United Kingdom: IEEE, pp. 8335–8339, May 2019. https://doi.org/10.1109/ICASSP.2019.8682543

  69. Xia, M., Liu, W., Wang, K., Zhang, X., Xu, Y.: Non-intrusive load disaggregation based on deep dilated residual network. Electr. Power Syst. Res. 170, 277–285 (2019). https://doi.org/10.1016/j.epsr.2019.01.034

    Article  Google Scholar 

  70. Xia, M., Liu, W., Xu, Y., Wang, K., Zhang, X.: Dilated residual attention network for load disaggregation. Neural Comput. Appl. 31(12), 8931–8953 (2019). https://doi.org/10.1007/s00521-019-04414-3

    Article  Google Scholar 

  71. Kaselimi, M., Doulamis, N., Voulodimos, A., Protopapadakis, E., Doulamis, A.: Context aware energy disaggregation using adaptive bidirectional LSTM models. IEEE Trans. Smart Grid 11(4), 3054–3067 (2020). https://doi.org/10.1109/TSG.2020.2974347

    Article  Google Scholar 

  72. Kaselimi, M., Voulodimos, A., Protopapadakis, E., Doulamis, N., Doulamis, A.: EnerGAN: a generative adversarial network for energy disaggregation. In: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain: IEEE, pp. 1578–1582, May 2020. https://doi.org/10.1109/ICASSP40776.2020.9054342

  73. Kaselimi, M., Doulamis, N., Voulodimos, A., Doulamis, A., Protopapadakis, E.: EnerGAN++: a generative adversarial gated recurrent network for robust energy disaggregation. IEEE Open J. Signal Process. 2, 1–16 (2021). https://doi.org/10.1109/OJSP.2020.3045829

    Article  Google Scholar 

  74. Liu, H., Liu, C., Tian, L., Zhao, H., Liu, J.: Non-intrusive load disaggregation based on deep learning and multi-feature fusion. In: 2021 3rd International Conference on Smart Power & Internet Energy Systems (SPIES), Shanghai, China: IEEE, pp. 210–215, September 2021. https://doi.org/10.1109/SPIES52282.2021.9633819

  75. Kianpoor, N., Hoff, B., Østrem, T.: Deep adaptive ensemble filter for non-intrusive residential load monitoring. Sensors 23(4), Art. no. 4, Jan. 2023. https://doi.org/10.3390/s23041992

  76. Zou, M., Zhu, S., Gu, J., Korunovic, L.M., Djokic, S.Z.: Heating and lighting load disaggregation using frequency components and convolutional bidirectional long short-term memory method. Energies 14(16), Art. no. 16, Jan. 2021. https://doi.org/10.3390/en14164831

  77. Hosseini, S.S., Delcroix, B., Henao, N., Agbossou, K., Kelouwani, S.: A case study on obstacles to feasible NILM solutions for energy disaggregation in quebec residences. Power 2, 4 (2022)

    Google Scholar 

  78. Li, H.: A Non-intrusive home load identification method based on adaptive reinforcement learning algorithm. IOP Conf. Ser. Mater. Sci. Eng. 853(1), 012030 (2020). https://doi.org/10.1088/1757-899X/853/1/012030

    Article  Google Scholar 

  79. Zaouali, K., Ammari, M.L., Bouallegue, R.: LSTM-based reinforcement q learning model for non intrusive load monitoring. In: Barolli, L., Hussain, F., Enokido, T. (eds.) Advanced Information Networking and Applications, pp. 1–13. Lecture Notes in Networks and Systems. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99619-2_1

  80. NVE and SSB, Oppvarming i boliger. Kartlegging av oppvarmingsutstyr of effektiviseringstiltak i husholdningene. NVE Rapport 85–2014 (2014). Accessed 23 Mar 2023. https://publikasjoner.nve.no/rapport/2014/rapport2014_85.pdf

Download references

Acknowledgment

This article has been written within the research project “Coincidence factors and peak loads of buildings in the Norwegian low carbon society” (COFACTOR). The authors gratefully acknowledge the support from the Research Council of Norway (project number 326891), research partners, industry partners and data providers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Synne Krekling Lien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lien, S.K., Najafi, B., Rajasekharan, J. (2024). Advances in Machine-Learning Based Disaggregation of Building Heating Loads: A Review. In: Jørgensen, B.N., da Silva, L.C.P., Ma, Z. (eds) Energy Informatics. EI.A 2023. Lecture Notes in Computer Science, vol 14467. Springer, Cham. https://doi.org/10.1007/978-3-031-48649-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48649-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48648-7

  • Online ISBN: 978-3-031-48649-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics