Skip to main content

Weakening Assumptions for Publicly-Verifiable Deletion

  • Conference paper
  • First Online:
Theory of Cryptography (TCC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14372))

Included in the following conference series:

  • 215 Accesses

Abstract

We develop a simple compiler that generically adds publicly-verifiable deletion to a variety of cryptosystems. Our compiler only makes use of one-way functions (or one-way state generators, if we allow the public verification key to be quantum). Previously, similar compilers either relied on indistinguishability obfuscation along with any one-way function (Bartusek et al., ePrint:2023/265), or on almost-regular one-way functions (Bartusek, Khurana and Poremba, CRYPTO 2023).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A concurrent updated version of [10] also obtained functional encryption with certified deletion, although in the private-verification settings.

  2. 2.

    One can usually think of \(\mathcal{Z}_\lambda \) as just encrypting its first input and leaving the remaining in the clear. However, we need to formulate the more general definition of \(\mathcal{Z}_\lambda \) that operates on all inputs to handle certain applications, such as attribute-based encryption. See [4] for details.

References

  1. Agrawal, S., Kitagawa, F., Nishimaki, R., Yamada, S., Yamakawa, T.: Public key encryption with secure key leasing. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, vol. 14004, pp. 581–610. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30545-0_20

    Chapter  Google Scholar 

  2. Ananth, P., Poremba, A., Vaikuntanathan, V.: Revocable cryptography from learning with errors. Cryptology ePrint Archive, Paper 2023/325 (2023). https://eprint.iacr.org/2023/325

  3. Bartusek, J., et al.: Obfuscation and outsourced computation with certified deletion. Cryptology ePrint Archive, Paper 2023/265 (2023). https://eprint.iacr.org/2023/265

  4. Bartusek, J., Khurana, D.: Cryptography with certified deletion. In: Crypto 2023 (2023, to appear)

    Google Scholar 

  5. Bartusek, J., Khurana, D., Poremba, A.: Publicly-verifiable deletion via target-collapsing functions. In: Crypto 2023 (2023, to appear)

    Google Scholar 

  6. Broadbent, A., Islam, R.: Quantum encryption with certified deletion. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12552, pp. 92–122. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64381-2_4

    Chapter  Google Scholar 

  7. Dall’Agnol, M., Spooner, N.: On the necessity of collapsing. Cryptology ePrint Archive, Paper 2022/786 (2022). https://eprint.iacr.org/2022/786

  8. Haitner, I., Horvitz, O., Katz, J., Koo, C.-Y., Morselli, R., Shaltiel, R.: Reducing complexity assumptions for statistically-hiding commitment. J. Cryptol. 22(3), 283–310 (2007). https://doi.org/10.1007/s00145-007-9012-8

    Article  MathSciNet  MATH  Google Scholar 

  9. Hiroka, T., Morimae, T., Nishimaki, R., Yamakawa, T.: Quantum encryption with certified deletion, revisited: public key, attribute-based, and classical communication. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13090, pp. 606–636. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92062-3_21

    Chapter  Google Scholar 

  10. Hiroka, T., Morimae, T., Nishimaki, R., Yamakawa, T.: Certified everlasting functional encryption. Cryptology ePrint Archive, Paper 2022/969 (2022). https://eprint.iacr.org/2022/969, https://eprint.iacr.org/2022/969

  11. Hiroka, T., Morimae, T., Nishimaki, R., Yamakawa, T.: Certified everlasting zero-knowledge proof for QMA. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part I. LNCS, vol. 13507, pp. 239–268. Springer, Cham (2022)

    Chapter  Google Scholar 

  12. Ji, Z., Liu, Y.-K., Song, F.: Pseudorandom quantum states. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 126–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_5

    Chapter  Google Scholar 

  13. Kitagawa, F., Nishimaki, R., Yamakawa, T.: Publicly verifiable deletion from minimal assumptions. Cryptology ePrint Archive, Paper 2023/538 (2023). https://eprint.iacr.org/2023/538

  14. Kretschmer, W.: Quantum pseudorandomness and classical complexity. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPICS.TQC.2021.2, https://drops.dagstuhl.de/opus/volltexte/2021/13997/

  15. Kretschmer, W., Qian, L., Sinha, M., Tal, A.: Quantum cryptography in algorithmica. In: Saha, B., Servedio, R.A. (eds.) Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA, June 20–23, 2023, pp. 1589–1602. ACM (2023). https://doi.org/10.1145/3564246.3585225

  16. Malavolta, G., Walter, M.: Non-interactive quantum key distribution. Cryptology ePrint Archive, Paper 2023/500 (2023). https://eprint.iacr.org/2023/500

  17. Morimae, T., Yamakawa, T.: Quantum commitments and signatures without one-way functions. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13507, pp. 269–295. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15802-5_10

  18. Poremba, A.: Quantum proofs of deletion for learning with errors. In: Kalai, Y.T. (ed.) 14th Innovations in Theoretical Computer Science Conference, ITCS 2023, January 10–13, 2023, MIT, Cambridge, Massachusetts, USA. LIPIcs, vol. 251, pp. 90:1–90:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023). https://doi.org/10.4230/LIPIcs.ITCS.2023.9

  19. Unruh, D.: Revocable quantum timed-release encryption. J. ACM 62(6) (2015). https://doi.org/10.1145/2817206

  20. Winter, A.J.: Coding theorem and strong converse for quantum channels. IEEE Trans. Inf. Theory 45(7), 2481–2485 (1999). https://doi.org/10.1109/18.796385

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

DK was supported in part by NSF 2112890, NSF CNS-2247727, and DARPA SIEVE. This material is based upon work supported by the Defense Advanced Research Projects Agency through Award HR00112020024. GM was partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Bartusek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bartusek, J., Khurana, D., Malavolta, G., Poremba, A., Walter, M. (2023). Weakening Assumptions for Publicly-Verifiable Deletion. In: Rothblum, G., Wee, H. (eds) Theory of Cryptography. TCC 2023. Lecture Notes in Computer Science, vol 14372. Springer, Cham. https://doi.org/10.1007/978-3-031-48624-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48624-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48623-4

  • Online ISBN: 978-3-031-48624-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics