Abstract
Interactive proof systems enable a verifier with limited resources to decide an intractable language (or compute a hard function) by communicating with a powerful but untrusted prover. Such systems guarantee soundness: the prover can only convince the verifier of true statements. This is a central notion in computer science with far-reaching implications. One key drawback of the classical model is that the data on which the prover operates must be held by a single machine.
In this work, we initiate the study of distributed-prover interactive proofs (dpIPs): an untrusted cluster of machines, acting as a distributed prover, interacts with a single verifier. The machines in the cluster jointly store and operate on a massive data-set that no single machine can store. The goal is for the machines in the cluster to convince the verifier of the validity of some statement about its data-set. We formalize the communication and space constraints via the massively parallel computation (MPC) model, a widely accepted analytical framework capturing the computational power of massive data-centers.
Our main result is a compiler that generically augments any verification algorithm in the MPC model with a (computational) soundness guarantee. Concretely, for any language L for which there is an MPC algorithm verifying whether \(x \in L\), we design a new MPC protocol capable of convincing a verifier of the validity of \(x \in L\) and where if \(x\not \in L\), the verifier rejects with overwhelming probability. The new protocol requires only slightly more rounds, i.e., a \(\textsf{poly}(\log N)\) blowup, and a slightly bigger memory per machine, i.e., \(\textsf{poly}(\lambda )\) blowup, where N is the total size of the dataset and \(\lambda \) is a security parameter independent of N.
En route, we introduce distributed-prover interactive oracle proofs (dpIOPs), a natural adaptation of the (by now classical) IOP model to the distributed prover setting. We design a dpIOP for verification algorithms in the MPC model and then translate them to “plain model” dpIPs via an adaptation of existing polynomial commitment schemes into the distributed prover setting.
P. Soni—Work was done partially when the author was visiting Carnegie Mellon University.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kook Jin Ahn and Sudipto Guha: Access to data and number of iterations: dual primal algorithms for maximum matching under resource constraints. ACM Trans. Parallel Comput. (TOPC) 4(4), 17 (2018)
Andoni, A., Nikolov, A., Onak, K., Yaroslavtsev, G.: Parallel algorithms for geometric graph problems. In: STOC 2014 (2014)
Andoni, A., Stein, C., Zhong, P.: Log diameter rounds algorithms for \(2 \)-vertex and \(2 \)-edge connectivity. arXiv preprint arXiv:1905.00850 (2019)
Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and hardness of approximation problems. In: 33rd Annual Symposium on Foundations of Computer Science, FOCS, pp. 14–23 (1992)
Arun, A., Ganesh, C., Lokam, S.V., Mopuri, T., Sridhar, S.: Dew: a transparent constant-sized polynomial commitment scheme. In: Public Key Cryptography, pp. 542–571 (2023)
Assadi, S.: Simple round compression for parallel vertex cover. CoRR, abs/1709.04599 (2017)
Assadi, S., Bateni, M.H., Bernstein, A., Mirrokni, V., Stein, C.: Coresets meet EDCS: algorithms for matching and vertex cover on massive graphs. arXiv preprint arXiv:1711.03076 (2017)
Assadi, S., Khanna, S.: Randomized composable coresets for matching and vertex cover. In: Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures, pp. 3–12. ACM (2017)
Assadi, S., Sun, X., Weinstein, O.: Massively parallel algorithms for finding well-connected components in sparse graphs. CoRR, abs/1805.02974 (2018)
Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylogarithmic time. In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, STOC, pp. 21–31 (1991)
Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-prover interactive protocols. Comput. Complex. 1, 3–40 (1991)
Bahmani, B., Kumar, R., Vassilvitskii, S.: Densest subgraph in streaming and MapReduce. Proc. VLDB Endow. 5(5), 454–465 (2012)
Bahmani, B., Moseley, B., Vattani, A., Kumar, R., Vassilvitskii, S.: Scalable k-means++. Proc. VLDB Endow. 5(7), 622–633 (2012)
Bateni, M.H., Bhaskara, A., Lattanzi, S., Mirrokni, V.: Distributed balanced clustering via mapping coresets. In: Advances in Neural Information Processing Systems, pp. 2591–2599 (2014)
Behnezhad, S., Derakhshan, M., Hajiaghayi, M.T., Karp, R.M.: Massively parallel symmetry breaking on sparse graphs: MIS and maximal matching. CoRR, abs/1807.06701 (2018)
Behnezhad, S., Hajiaghayi, M.T., Harris, D.G.: Exponentially faster massively parallel maximal matching. arXiv preprint arXiv:1901.03744 (2019)
Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed-Solomon interactive oracle proofs of proximity. In: 45th International Colloquium on Automata, Languages, and Programming (ICALP), pp. 14:1–14:17. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018)
Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_4
Ben-Sasson, E., Goldberg, L., Kopparty, S., Saraf, S.: DEEP-FRI: sampling outside the box improves soundness, pp. 5:1–5:32 (2020)
Bick, A., Kol, G., Oshman, R.: Distributed zero-knowledge proofs over networks. In: SODA, pp. 2426–2458 (2022)
Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Public-coin zero-knowledge arguments with (almost) minimal time and space overheads. In: Theory of Cryptography, pp. 168–197 (2020)
Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_4
Blumberg, A.J., Thaler, J., Vu, V., Walfish, M.: Verifiable computation using multiple provers. IACR Cryptol. ePrint Arch., p. 846 (2014)
Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_12
Bootle, J., Chiesa, A., Hu, Y., Orrú, M.: Gemini: elastic snarks for diverse environments. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology–EUROCRYPT 2022. LNCS, vol. 13276, pp. 427–457. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07085-3_15
Brandt, S., Fischer, M., Uitto, J.: Matching and MIS for uniformly sparse graphs in the low-memory MPC model. CoRR, abs/1807.05374 (2018)
Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 677–706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_24
Chang, Y.-J., Fischer, M., Ghaffari, M., Uitto, J., Zheng, Y.: The complexity of (\(\Delta \)+1) coloring incongested clique, massively parallel computation, and centralized local computation. arXiv preprint arXiv:1808.08419 (2018)
Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: preprocessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_26
Chung, K.-M., Ho, K.-Y., Sun, X.: On the hardness of massively parallel computation. In: 32nd ACM Symposium on Parallelism in Algorithms and Architectures, SPAA, pp. 153–162 (2020)
Czumaj, A., Ła̧cki, J., Ma̧dry, A., Mitrović, S., Onak, K., Sankowski, P.: Round compression for parallel matching algorithms. In: STOC (2018)
da Ponte Barbosa, R., Ene, A., Nguyen, H.L., Ward, J.: A new framework for distributed submodular maximization. In: FOCS, pp. 645–654 (2016)
Ene, A., Im, S., Moseley, B.: Fast clustering using MapReduce. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 681–689. ACM (2011)
Ene, A., Nguyen, H.: Random coordinate descent methods for minimizing decomposable submodular functions. In: International Conference on Machine Learning, pp. 787–795 (2015)
Fernando, R., Gelles, Y., Komargodski, I., Shi, E.: Maliciously secure massively parallel computation for all-but-one corruptions. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology. CRYPTO 2022. LNCS, vol. 13507, pp. 688–718. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15802-5_24
Fernando, R., Komargodski, I., Liu, Y., Shi, E.: Secure massively parallel computation for dishonest majority. In: Theory of Cryptography - 18th International Conference, TCC, pp. 379–409 (2020)
Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: permutations over Lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive (2019)
Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC, pp. 99–108 (2011)
Ghaffari, M., Lattanzi, S., Mitrović, S.: Improved parallel algorithms for density-based network clustering. In: International Conference on Machine Learning, pp. 2201–2210 (2019)
Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity for all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729 (1991)
Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)
Karloff, H.J., Suri, S., Vassilvitskii, S.: A model of computation for MapReduce. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 938–948 (2010)
Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) Constant-size commitments to polynomials and their applications. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_11
Kattis, A.A., Panarin, K., Vlasov, A.: Redshift: transparent snarks from list polynomial commitments. In: CCS, pp. 1725–1737 (2022)
Kol, G., Oshman, R., Saxena, R.R.: Interactive distributed proofs. In: PODC, pp. 255–264 (2018)
Kumar, R., Moseley, B., Vassilvitskii, S., Vattani, A.: Fast greedy algorithms in MapReduce and streaming. TOPC. 2(3), 1–22 (2015)
Lee, J.: Dory: efficient, transparent arguments for generalised inner products and polynomial commitments. In: Theory of Cryptography, pp. 1–34 (2021)
Lindell: Parallel coin-tossing and constant-round secure two-party computation. J. Cryptol. 16, 143–184 (2003)
Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_6
Naor, M., Parter, M., Yogev, E.: The power of distributed verifiers in interactive proofs. In: SODA, pp. 1096–115 (2020)
Ozdemir, A., Boneh, D.: Experimenting with collaborative ZK-snarks: zero-knowledge proofs for distributed secrets. In: USENIX, pp. 4291–4308 (2022)
Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In: Theory of Cryptography, pp. 222–242 (2013)
Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM. 21(2), 120–126 (1978)
Roughgarden, T., Vassilvitskii, S., Wang, J.R.: Shuffles and circuits (on lower bounds for modern parallel computation). J. ACM 65(6), 1–24 (2018)
Setty, S., Lee, J.: Quarks: quadruple-efficient transparent Zksnarks. Cryptology ePrint Archive, Paper 2020/1275 (2020)
Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient Zksnarks without trusted setup. In: S&P, pp. 926–943 (2018)
Wesolowski, B.: Efficient verifiable delay functions. J. Cryptol. 33(4), 2113–2147 (2020)
Wu, H., Zheng, W., Chiesa, A., Popa, R.A., Stoica, I.: DIZK: a distributed zero knowledge proof system. In: USENIX, pp. 675–692 (2018)
Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its applications to zero knowledge proof. In: S&P, pp. 859–876 (2020)
Acknowledgements
Rex Fernando, Elaine Shi, and Pratik Soni were sponsored by the Algorand Centres of Excellence (ACE) Programme, the Defense Advanced Research Projects Agency under award number HR001120C0086, the Office of Naval Research under award number N000142212064, and the National Science Foundation under award numbers 2128519 and 2044679. The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity. Ilan Komargodski is the incumbent of the Harry & Abe Sherman Senior Lectureship at the School of Computer Science and Engineering at the Hebrew University, supported in part by an Alon Young Faculty Fellowship, by a grant from the Israel Science Foundation (ISF Grant No. 1774/20), and by a grant from the US-Israel Binational Science Foundation and the US National Science Foundation (BSF-NSF Grant No. 2020643).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Das, S., Fernando, R., Komargodski, I., Shi, E., Soni, P. (2023). Distributed-Prover Interactive Proofs. In: Rothblum, G., Wee, H. (eds) Theory of Cryptography. TCC 2023. Lecture Notes in Computer Science, vol 14369. Springer, Cham. https://doi.org/10.1007/978-3-031-48615-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-48615-9_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-48614-2
Online ISBN: 978-3-031-48615-9
eBook Packages: Computer ScienceComputer Science (R0)