Skip to main content

Distributed-Prover Interactive Proofs

  • Conference paper
  • First Online:
Theory of Cryptography (TCC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14369))

Included in the following conference series:

  • 783 Accesses

Abstract

Interactive proof systems enable a verifier with limited resources to decide an intractable language (or compute a hard function) by communicating with a powerful but untrusted prover. Such systems guarantee soundness: the prover can only convince the verifier of true statements. This is a central notion in computer science with far-reaching implications. One key drawback of the classical model is that the data on which the prover operates must be held by a single machine.

In this work, we initiate the study of distributed-prover interactive proofs (dpIPs): an untrusted cluster of machines, acting as a distributed prover, interacts with a single verifier. The machines in the cluster jointly store and operate on a massive data-set that no single machine can store. The goal is for the machines in the cluster to convince the verifier of the validity of some statement about its data-set. We formalize the communication and space constraints via the massively parallel computation (MPC) model, a widely accepted analytical framework capturing the computational power of massive data-centers.

Our main result is a compiler that generically augments any verification algorithm in the MPC model with a (computational) soundness guarantee. Concretely, for any language L for which there is an MPC algorithm verifying whether \(x \in L\), we design a new MPC protocol capable of convincing a verifier of the validity of \(x \in L\) and where if \(x\not \in L\), the verifier rejects with overwhelming probability. The new protocol requires only slightly more rounds, i.e., a \(\textsf{poly}(\log N)\) blowup, and a slightly bigger memory per machine, i.e., \(\textsf{poly}(\lambda )\) blowup, where N is the total size of the dataset and \(\lambda \) is a security parameter independent of N.

En route, we introduce distributed-prover interactive oracle proofs (dpIOPs), a natural adaptation of the (by now classical) IOP model to the distributed prover setting. We design a dpIOP for verification algorithms in the MPC model and then translate them to “plain model” dpIPs via an adaptation of existing polynomial commitment schemes into the distributed prover setting.

P. Soni—Work was done partially when the author was visiting Carnegie Mellon University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kook Jin Ahn and Sudipto Guha: Access to data and number of iterations: dual primal algorithms for maximum matching under resource constraints. ACM Trans. Parallel Comput. (TOPC) 4(4), 17 (2018)

    Google Scholar 

  2. Andoni, A., Nikolov, A., Onak, K., Yaroslavtsev, G.: Parallel algorithms for geometric graph problems. In: STOC 2014 (2014)

    Google Scholar 

  3. Andoni, A., Stein, C., Zhong, P.: Log diameter rounds algorithms for \(2 \)-vertex and \(2 \)-edge connectivity. arXiv preprint arXiv:1905.00850 (2019)

  4. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and hardness of approximation problems. In: 33rd Annual Symposium on Foundations of Computer Science, FOCS, pp. 14–23 (1992)

    Google Scholar 

  5. Arun, A., Ganesh, C., Lokam, S.V., Mopuri, T., Sridhar, S.: Dew: a transparent constant-sized polynomial commitment scheme. In: Public Key Cryptography, pp. 542–571 (2023)

    Google Scholar 

  6. Assadi, S.: Simple round compression for parallel vertex cover. CoRR, abs/1709.04599 (2017)

    Google Scholar 

  7. Assadi, S., Bateni, M.H., Bernstein, A., Mirrokni, V., Stein, C.: Coresets meet EDCS: algorithms for matching and vertex cover on massive graphs. arXiv preprint arXiv:1711.03076 (2017)

  8. Assadi, S., Khanna, S.: Randomized composable coresets for matching and vertex cover. In: Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures, pp. 3–12. ACM (2017)

    Google Scholar 

  9. Assadi, S., Sun, X., Weinstein, O.: Massively parallel algorithms for finding well-connected components in sparse graphs. CoRR, abs/1805.02974 (2018)

    Google Scholar 

  10. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylogarithmic time. In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, STOC, pp. 21–31 (1991)

    Google Scholar 

  11. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-prover interactive protocols. Comput. Complex. 1, 3–40 (1991)

    Article  MATH  Google Scholar 

  12. Bahmani, B., Kumar, R., Vassilvitskii, S.: Densest subgraph in streaming and MapReduce. Proc. VLDB Endow. 5(5), 454–465 (2012)

    Article  Google Scholar 

  13. Bahmani, B., Moseley, B., Vattani, A., Kumar, R., Vassilvitskii, S.: Scalable k-means++. Proc. VLDB Endow. 5(7), 622–633 (2012)

    Article  Google Scholar 

  14. Bateni, M.H., Bhaskara, A., Lattanzi, S., Mirrokni, V.: Distributed balanced clustering via mapping coresets. In: Advances in Neural Information Processing Systems, pp. 2591–2599 (2014)

    Google Scholar 

  15. Behnezhad, S., Derakhshan, M., Hajiaghayi, M.T., Karp, R.M.: Massively parallel symmetry breaking on sparse graphs: MIS and maximal matching. CoRR, abs/1807.06701 (2018)

    Google Scholar 

  16. Behnezhad, S., Hajiaghayi, M.T., Harris, D.G.: Exponentially faster massively parallel maximal matching. arXiv preprint arXiv:1901.03744 (2019)

  17. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed-Solomon interactive oracle proofs of proximity. In: 45th International Colloquium on Automata, Languages, and Programming (ICALP), pp. 14:1–14:17. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018)

    Google Scholar 

  18. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_4

    Chapter  Google Scholar 

  19. Ben-Sasson, E., Goldberg, L., Kopparty, S., Saraf, S.: DEEP-FRI: sampling outside the box improves soundness, pp. 5:1–5:32 (2020)

    Google Scholar 

  20. Bick, A., Kol, G., Oshman, R.: Distributed zero-knowledge proofs over networks. In: SODA, pp. 2426–2458 (2022)

    Google Scholar 

  21. Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Public-coin zero-knowledge arguments with (almost) minimal time and space overheads. In: Theory of Cryptography, pp. 168–197 (2020)

    Google Scholar 

  22. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_4

    Chapter  Google Scholar 

  23. Blumberg, A.J., Thaler, J., Vu, V., Walfish, M.: Verifiable computation using multiple provers. IACR Cryptol. ePrint Arch., p. 846 (2014)

    Google Scholar 

  24. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_12

    Chapter  MATH  Google Scholar 

  25. Bootle, J., Chiesa, A., Hu, Y., Orrú, M.: Gemini: elastic snarks for diverse environments. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology–EUROCRYPT 2022. LNCS, vol. 13276, pp. 427–457. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07085-3_15

  26. Brandt, S., Fischer, M., Uitto, J.: Matching and MIS for uniformly sparse graphs in the low-memory MPC model. CoRR, abs/1807.05374 (2018)

    Google Scholar 

  27. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 677–706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_24

    Chapter  Google Scholar 

  28. Chang, Y.-J., Fischer, M., Ghaffari, M., Uitto, J., Zheng, Y.: The complexity of (\(\Delta \)+1) coloring incongested clique, massively parallel computation, and centralized local computation. arXiv preprint arXiv:1808.08419 (2018)

  29. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: preprocessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_26

    Chapter  Google Scholar 

  30. Chung, K.-M., Ho, K.-Y., Sun, X.: On the hardness of massively parallel computation. In: 32nd ACM Symposium on Parallelism in Algorithms and Architectures, SPAA, pp. 153–162 (2020)

    Google Scholar 

  31. Czumaj, A., Ła̧cki, J., Ma̧dry, A., Mitrović, S., Onak, K., Sankowski, P.: Round compression for parallel matching algorithms. In: STOC (2018)

    Google Scholar 

  32. da Ponte Barbosa, R., Ene, A., Nguyen, H.L., Ward, J.: A new framework for distributed submodular maximization. In: FOCS, pp. 645–654 (2016)

    Google Scholar 

  33. Ene, A., Im, S., Moseley, B.: Fast clustering using MapReduce. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 681–689. ACM (2011)

    Google Scholar 

  34. Ene, A., Nguyen, H.: Random coordinate descent methods for minimizing decomposable submodular functions. In: International Conference on Machine Learning, pp. 787–795 (2015)

    Google Scholar 

  35. Fernando, R., Gelles, Y., Komargodski, I., Shi, E.: Maliciously secure massively parallel computation for all-but-one corruptions. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology. CRYPTO 2022. LNCS, vol. 13507, pp. 688–718. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15802-5_24

  36. Fernando, R., Komargodski, I., Liu, Y., Shi, E.: Secure massively parallel computation for dishonest majority. In: Theory of Cryptography - 18th International Conference, TCC, pp. 379–409 (2020)

    Google Scholar 

  37. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: permutations over Lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive (2019)

    Google Scholar 

  38. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC, pp. 99–108 (2011)

    Google Scholar 

  39. Ghaffari, M., Lattanzi, S., Mitrović, S.: Improved parallel algorithms for density-based network clustering. In: International Conference on Machine Learning, pp. 2201–2210 (2019)

    Google Scholar 

  40. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity for all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  41. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  42. Karloff, H.J., Suri, S., Vassilvitskii, S.: A model of computation for MapReduce. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 938–948 (2010)

    Google Scholar 

  43. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) Constant-size commitments to polynomials and their applications. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_11

    Chapter  Google Scholar 

  44. Kattis, A.A., Panarin, K., Vlasov, A.: Redshift: transparent snarks from list polynomial commitments. In: CCS, pp. 1725–1737 (2022)

    Google Scholar 

  45. Kol, G., Oshman, R., Saxena, R.R.: Interactive distributed proofs. In: PODC, pp. 255–264 (2018)

    Google Scholar 

  46. Kumar, R., Moseley, B., Vassilvitskii, S., Vattani, A.: Fast greedy algorithms in MapReduce and streaming. TOPC. 2(3), 1–22 (2015)

    Article  Google Scholar 

  47. Lee, J.: Dory: efficient, transparent arguments for generalised inner products and polynomial commitments. In: Theory of Cryptography, pp. 1–34 (2021)

    Google Scholar 

  48. Lindell: Parallel coin-tossing and constant-round secure two-party computation. J. Cryptol. 16, 143–184 (2003)

    Google Scholar 

  49. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_6

    Chapter  Google Scholar 

  50. Naor, M., Parter, M., Yogev, E.: The power of distributed verifiers in interactive proofs. In: SODA, pp. 1096–115 (2020)

    Google Scholar 

  51. Ozdemir, A., Boneh, D.: Experimenting with collaborative ZK-snarks: zero-knowledge proofs for distributed secrets. In: USENIX, pp. 4291–4308 (2022)

    Google Scholar 

  52. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In: Theory of Cryptography, pp. 222–242 (2013)

    Google Scholar 

  53. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM. 21(2), 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  54. Roughgarden, T., Vassilvitskii, S., Wang, J.R.: Shuffles and circuits (on lower bounds for modern parallel computation). J. ACM 65(6), 1–24 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  55. Setty, S., Lee, J.: Quarks: quadruple-efficient transparent Zksnarks. Cryptology ePrint Archive, Paper 2020/1275 (2020)

    Google Scholar 

  56. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient Zksnarks without trusted setup. In: S&P, pp. 926–943 (2018)

    Google Scholar 

  57. Wesolowski, B.: Efficient verifiable delay functions. J. Cryptol. 33(4), 2113–2147 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  58. Wu, H., Zheng, W., Chiesa, A., Popa, R.A., Stoica, I.: DIZK: a distributed zero knowledge proof system. In: USENIX, pp. 675–692 (2018)

    Google Scholar 

  59. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its applications to zero knowledge proof. In: S&P, pp. 859–876 (2020)

    Google Scholar 

Download references

Acknowledgements

Rex Fernando, Elaine Shi, and Pratik Soni were sponsored by the Algorand Centres of Excellence (ACE) Programme, the Defense Advanced Research Projects Agency under award number HR001120C0086, the Office of Naval Research under award number N000142212064, and the National Science Foundation under award numbers 2128519 and 2044679. The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity. Ilan Komargodski is the incumbent of the Harry & Abe Sherman Senior Lectureship at the School of Computer Science and Engineering at the Hebrew University, supported in part by an Alon Young Faculty Fellowship, by a grant from the Israel Science Foundation (ISF Grant No. 1774/20), and by a grant from the US-Israel Binational Science Foundation and the US National Science Foundation (BSF-NSF Grant No. 2020643).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourav Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, S., Fernando, R., Komargodski, I., Shi, E., Soni, P. (2023). Distributed-Prover Interactive Proofs. In: Rothblum, G., Wee, H. (eds) Theory of Cryptography. TCC 2023. Lecture Notes in Computer Science, vol 14369. Springer, Cham. https://doi.org/10.1007/978-3-031-48615-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48615-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48614-2

  • Online ISBN: 978-3-031-48615-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics