Skip to main content

Density Conditions for Coherent State Subsystems of Nilpotent Lie Groups

  • Conference paper
  • First Online:
Extended Abstracts 2021/2022 (GMC 2021)

Part of the book series: Trends in Mathematics ((RPGAPC,volume 3))

Included in the following conference series:

Abstract

The aim of this note is to present recent work on density conditions for spanning properties of coherent state subsystems for nilpotent Lie groups and provide context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Ascensi, H.G. Feichtinger, N. Kaiblinger, Dilation of the Weyl symbol and Balian-low theorem. Trans. Am. Math. Soc. 366(7), 3865–3880 (2014)

    Article  MathSciNet  Google Scholar 

  2. R. Balan, P.G. Casazza, C. Heil, Z. Landau, Density, overcompleteness, and localization of frames. I: theory. J. Fourier Anal. Appl. 12(2), 105–143 (2006)

    MathSciNet  Google Scholar 

  3. R. Balan, P.G. Casazza, C. Heil, Z. Landau, Density, overcompleteness, and localization of frames. II: Gabor systems. J. Fourier Anal. Appl. 12(3), 307–344 (2006)

    MathSciNet  Google Scholar 

  4. R. Balan, P. Casazza, Z. Landau, Redundancy for localized frames. Isr. J. Math. 185, 445–476 (2011)

    Article  MathSciNet  Google Scholar 

  5. E. BĂ©dos, U. Enstad, J.T. van Velthoven, Smooth lattice orbits of nilpotent groups and strict comparison of projections. J. Funct. Anal. 283(6), 48 (2022). Id/No 109572.

    Google Scholar 

  6. B. Bekka, Square integrable representations, von Neumann algebras and an application to Gabor analysis. J. Fourier Anal. Appl. 10(4), 325–349 (2004)

    Article  MathSciNet  Google Scholar 

  7. M. Björklund, T. Hartnick, Approximate lattices. Duke Math. J. 167(15), 2903–2964 (2018)

    Article  MathSciNet  Google Scholar 

  8. E. Breuillard, Geometry of locally compact groups of polynomial growth and shape of large balls. Groups Geom. Dyn. 8(3), 669–732 (2014)

    Article  MathSciNet  Google Scholar 

  9. M. Caspers, J.T. van Velthoven, Overcompleteness of coherent frames for unimodular amenable groups. Ark. Math. 61(2), 277–299 (2023)

    Article  MathSciNet  Google Scholar 

  10. L.J. Corwin, F.P. Greenleaf, Representations of Nilpotent Lie Groups and Their Applications. Part 1: Basic Theory and Examples. Cambridge Studies in Advanced Mathematics, vol. 18 (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  11. I. Daubechies, A. Grossmann, Y. Meyer, Painless nonorthogonal expansions. J. Math. Phys. 27, 1271–1283 (1986)

    Article  MathSciNet  Google Scholar 

  12. U. Enstad, The density theorem for projective representations via twisted group von Neumann algebras. J. Math. Anal. Appl. 511(2), 25 (2022) Id/No 126072

    Google Scholar 

  13. U. Enstad, S. Raum, A dynamical approach to non-uniform density theorems for coherent systems. Preprint (2022). arXiv:2207.05125

    Google Scholar 

  14. U. Enstad, J.T. Van Velthoven, Coherent systems over approximate lattices in amenable groups. Preprint (2022). Ann. Inst. Fourier (To Appear)

    Google Scholar 

  15. U. Enstad, J.T. van Velthoven, On sufficient density conditions for lattice orbits of relative discrete series. Arch. Math. 119(3), 279–291 (2022)

    Article  MathSciNet  Google Scholar 

  16. G.B. Folland, Harmonic Analysis in Phase Space. Annals of Mathematics Studies, vol. 122 (Princeton University Press, Princeton, 1989)

    Google Scholar 

  17. G.B. Folland, E.M. Stein, Hardy Spaces on Homogeneous Groups. Mathematical Notes (Princeton), vol. 28 (Princeton University Press, Princeton, 1982)

    Google Scholar 

  18. H. Führ, K. Gröchenig, A. Haimi, A. Klotz, J.L. Romero, Density of sampling and interpolation in reproducing kernel Hilbert spaces. J. Lond. Math. Soc., II. Ser. 96(3), 663–686 (2017)

    Google Scholar 

  19. J.-P. Gabardo, C.-K. Lai, V. Oussa, On exponential bases and frames with non-linear phase functions and some applications. J. Fourier Anal. Appl. 27(2), 24 (2021) Id/No 9

    Google Scholar 

  20. K. Gröchenig, Foundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis (Birkhäuser, Boston, 2001)

    Book  Google Scholar 

  21. K. Gröchenig, D. Rottensteiner, Orthonormal bases in the orbit of square-integrable representations of nilpotent Lie groups. J. Funct. Anal. 275(12), 3338–3379 (2018)

    Article  MathSciNet  Google Scholar 

  22. K. Gröchenig, J. Ortega-Cerdà, J.L. Romero, Deformation of Gabor systems. Adv. Math. 277, 388–425 (2015)

    Article  MathSciNet  Google Scholar 

  23. K. Gröchenig, J.L. Romero, D. Rottensteiner, J.T. Van Velthoven, Balian-Low type theorems on homogeneous groups. Anal. Math. 46(3), 483–515 (2020)

    Article  MathSciNet  Google Scholar 

  24. C. Heil, History and evolution of the density theorem for Gabor frames. J. Fourier Anal. Appl. 13(2), 113–166 (2007)

    Article  MathSciNet  Google Scholar 

  25. M.S. Jakobsen, F. Luef, Duality of Gabor frames and Heisenberg modules. J. Noncommut. Geom. 14(4), 1445–1500 (2020)

    Article  MathSciNet  Google Scholar 

  26. F. Luef, X. Wang, Gaussian gabor frames, seshadri constants and generalized buser–sarnak invariants. Geom. Funct. Anal. 33(3), 778–823 (2023)

    Article  MathSciNet  Google Scholar 

  27. C.C. Moore, J.A. Wolf, Square integrable representations of nilpotent groups. Trans. Am. Math. Soc. 185, 445–462 (1974)

    Article  MathSciNet  Google Scholar 

  28. H. Moscovici, Coherent state representations of nilpotent Lie groups. Commun. Math. Phys. 54, 63–68 (1977)

    Article  MathSciNet  Google Scholar 

  29. V. Oussa, Compactly supported bounded frames on Lie groups. J. Funct. Anal. 277(6), 1718–1762 (2019)

    Article  MathSciNet  Google Scholar 

  30. V. Oussa, Orthonormal bases arising from nilpotent actions. Trans. Am. Math. Soc. (to Appear)

    Google Scholar 

  31. A.M. Perelomov, Coherent states for arbitrary Lie group. Commun. Math. Phys. 26, 222–236 (1972)

    Article  MathSciNet  Google Scholar 

  32. A. Perelomov, Generalized Coherent States and Their Applications. Texts and Monographs in Physics (Springer, New York, 1986)

    Google Scholar 

  33. F. Pogorzelski, C. Richard, N. Strungaru, Leptin densities in amenable groups. J. Fourier Anal. Appl. 28(6), 36 (2022). Id/No 85

    Google Scholar 

  34. J. Ramanathan, T. Steger, Incompleteness of sparse coherent states. Appl. Comput. Harmon. Anal. 2(2), 148–153 (1995)

    Article  MathSciNet  Google Scholar 

  35. D. Robert, M. Combescure, Coherent States and Applications in Mathematical Physics. Theoretical and Mathematical Physics, 2nd revised and enlarged edition (Springer, Cham, 2021)

    Google Scholar 

  36. E. Romero, A complete Gabor system of zero Beurling density. Sampl. Theory Signal Image Process. 3(3), 299–304 (2004)

    Article  MathSciNet  Google Scholar 

  37. J.L. Romero, J.T. van Velthoven, The density theorem for discrete series representations restricted to lattices. Expo. Math. 40(2), 265–301 (2022)

    Article  MathSciNet  Google Scholar 

  38. Y. Wang, Sparse complete Gabor systems on a lattice. Appl. Comput. Harmon. Anal. 16(1), 60–67 (2004)

    Article  MathSciNet  Google Scholar 

  39. K. Zhu, Analysis on Fock Spaces. Graduate Texts in Mathematics, vol. 263 (Springer, New York, 2012)

    Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges support from the Austrian Science Fund (FWF) project J4555. Thanks are due to Ulrik Enstad for helpful comments on a preliminary version of this note.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordy Timo van Velthoven .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van Velthoven, J.T. (2024). Density Conditions for Coherent State Subsystems of Nilpotent Lie Groups. In: Cardona, D., Restrepo, J., Ruzhansky, M. (eds) Extended Abstracts 2021/2022. GMC 2021. Trends in Mathematics(), vol 3. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-48579-4_22

Download citation

Publish with us

Policies and ethics