Abstract
The aim of this note is to present recent work on density conditions for spanning properties of coherent state subsystems for nilpotent Lie groups and provide context.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
G. Ascensi, H.G. Feichtinger, N. Kaiblinger, Dilation of the Weyl symbol and Balian-low theorem. Trans. Am. Math. Soc. 366(7), 3865–3880 (2014)
R. Balan, P.G. Casazza, C. Heil, Z. Landau, Density, overcompleteness, and localization of frames. I: theory. J. Fourier Anal. Appl. 12(2), 105–143 (2006)
R. Balan, P.G. Casazza, C. Heil, Z. Landau, Density, overcompleteness, and localization of frames. II: Gabor systems. J. Fourier Anal. Appl. 12(3), 307–344 (2006)
R. Balan, P. Casazza, Z. Landau, Redundancy for localized frames. Isr. J. Math. 185, 445–476 (2011)
E. BĂ©dos, U. Enstad, J.T. van Velthoven, Smooth lattice orbits of nilpotent groups and strict comparison of projections. J. Funct. Anal. 283(6), 48 (2022). Id/No 109572.
B. Bekka, Square integrable representations, von Neumann algebras and an application to Gabor analysis. J. Fourier Anal. Appl. 10(4), 325–349 (2004)
M. Björklund, T. Hartnick, Approximate lattices. Duke Math. J. 167(15), 2903–2964 (2018)
E. Breuillard, Geometry of locally compact groups of polynomial growth and shape of large balls. Groups Geom. Dyn. 8(3), 669–732 (2014)
M. Caspers, J.T. van Velthoven, Overcompleteness of coherent frames for unimodular amenable groups. Ark. Math. 61(2), 277–299 (2023)
L.J. Corwin, F.P. Greenleaf, Representations of Nilpotent Lie Groups and Their Applications. Part 1: Basic Theory and Examples. Cambridge Studies in Advanced Mathematics, vol. 18 (Cambridge University Press, Cambridge, 1990)
I. Daubechies, A. Grossmann, Y. Meyer, Painless nonorthogonal expansions. J. Math. Phys. 27, 1271–1283 (1986)
U. Enstad, The density theorem for projective representations via twisted group von Neumann algebras. J. Math. Anal. Appl. 511(2), 25 (2022) Id/No 126072
U. Enstad, S. Raum, A dynamical approach to non-uniform density theorems for coherent systems. Preprint (2022). arXiv:2207.05125
U. Enstad, J.T. Van Velthoven, Coherent systems over approximate lattices in amenable groups. Preprint (2022). Ann. Inst. Fourier (To Appear)
U. Enstad, J.T. van Velthoven, On sufficient density conditions for lattice orbits of relative discrete series. Arch. Math. 119(3), 279–291 (2022)
G.B. Folland, Harmonic Analysis in Phase Space. Annals of Mathematics Studies, vol. 122 (Princeton University Press, Princeton, 1989)
G.B. Folland, E.M. Stein, Hardy Spaces on Homogeneous Groups. Mathematical Notes (Princeton), vol. 28 (Princeton University Press, Princeton, 1982)
H. Führ, K. Gröchenig, A. Haimi, A. Klotz, J.L. Romero, Density of sampling and interpolation in reproducing kernel Hilbert spaces. J. Lond. Math. Soc., II. Ser. 96(3), 663–686 (2017)
J.-P. Gabardo, C.-K. Lai, V. Oussa, On exponential bases and frames with non-linear phase functions and some applications. J. Fourier Anal. Appl. 27(2), 24 (2021) Id/No 9
K. Gröchenig, Foundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis (Birkhäuser, Boston, 2001)
K. Gröchenig, D. Rottensteiner, Orthonormal bases in the orbit of square-integrable representations of nilpotent Lie groups. J. Funct. Anal. 275(12), 3338–3379 (2018)
K. Gröchenig, J. Ortega-Cerdà , J.L. Romero, Deformation of Gabor systems. Adv. Math. 277, 388–425 (2015)
K. Gröchenig, J.L. Romero, D. Rottensteiner, J.T. Van Velthoven, Balian-Low type theorems on homogeneous groups. Anal. Math. 46(3), 483–515 (2020)
C. Heil, History and evolution of the density theorem for Gabor frames. J. Fourier Anal. Appl. 13(2), 113–166 (2007)
M.S. Jakobsen, F. Luef, Duality of Gabor frames and Heisenberg modules. J. Noncommut. Geom. 14(4), 1445–1500 (2020)
F. Luef, X. Wang, Gaussian gabor frames, seshadri constants and generalized buser–sarnak invariants. Geom. Funct. Anal. 33(3), 778–823 (2023)
C.C. Moore, J.A. Wolf, Square integrable representations of nilpotent groups. Trans. Am. Math. Soc. 185, 445–462 (1974)
H. Moscovici, Coherent state representations of nilpotent Lie groups. Commun. Math. Phys. 54, 63–68 (1977)
V. Oussa, Compactly supported bounded frames on Lie groups. J. Funct. Anal. 277(6), 1718–1762 (2019)
V. Oussa, Orthonormal bases arising from nilpotent actions. Trans. Am. Math. Soc. (to Appear)
A.M. Perelomov, Coherent states for arbitrary Lie group. Commun. Math. Phys. 26, 222–236 (1972)
A. Perelomov, Generalized Coherent States and Their Applications. Texts and Monographs in Physics (Springer, New York, 1986)
F. Pogorzelski, C. Richard, N. Strungaru, Leptin densities in amenable groups. J. Fourier Anal. Appl. 28(6), 36 (2022). Id/No 85
J. Ramanathan, T. Steger, Incompleteness of sparse coherent states. Appl. Comput. Harmon. Anal. 2(2), 148–153 (1995)
D. Robert, M. Combescure, Coherent States and Applications in Mathematical Physics. Theoretical and Mathematical Physics, 2nd revised and enlarged edition (Springer, Cham, 2021)
E. Romero, A complete Gabor system of zero Beurling density. Sampl. Theory Signal Image Process. 3(3), 299–304 (2004)
J.L. Romero, J.T. van Velthoven, The density theorem for discrete series representations restricted to lattices. Expo. Math. 40(2), 265–301 (2022)
Y. Wang, Sparse complete Gabor systems on a lattice. Appl. Comput. Harmon. Anal. 16(1), 60–67 (2004)
K. Zhu, Analysis on Fock Spaces. Graduate Texts in Mathematics, vol. 263 (Springer, New York, 2012)
Acknowledgements
The author gratefully acknowledges support from the Austrian Science Fund (FWF) project J4555. Thanks are due to Ulrik Enstad for helpful comments on a preliminary version of this note.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
van Velthoven, J.T. (2024). Density Conditions for Coherent State Subsystems of Nilpotent Lie Groups. In: Cardona, D., Restrepo, J., Ruzhansky, M. (eds) Extended Abstracts 2021/2022. GMC 2021. Trends in Mathematics(), vol 3. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-48579-4_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-48579-4_22
Published:
Publisher Name: Birkhäuser, Cham
Print ISBN: 978-3-031-48578-7
Online ISBN: 978-3-031-48579-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)