Skip to main content

Context-Aware Trustworthy IoT Energy Services Provisioning

  • Conference paper
  • First Online:
Service-Oriented Computing (ICSOC 2023)

Abstract

We propose an IoT energy service provisioning framework to ensure consumers’ Quality of Experience (QoE). A novel context-aware trust assessment model is proposed to evaluate the trustworthiness of providers. Our model adapts to the dynamic nature of energy service providers to maintain QoE by selecting trustworthy providers. The proposed model evaluates providers’ trustworthiness in various contexts, considering their behavior and energy provisioning history. Additionally, a trust-adaptive composition technique is presented for optimal energy allocation. Experimental results demonstrate the effectiveness and efficiency of the proposed approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We used interchangeably the terms energy provider and provider to refer to the energy provider.

  2. 2.

    air-charge.com.

  3. 3.

    https://ibm.co/2O7IvxJ.

References

  1. Lakhdari, A., et al.: Composing energy services in a crowdsourced IoT environment. IEEE Trans. Serv. Comput. 15(3), 1280–1294 (2020)

    Article  Google Scholar 

  2. Dhungana, A., et al.: Peer-to-peer energy sharing in mobile networks: applications, challenges, and open problems. Ad Hoc Netw. 97, 102029 (2020)

    Article  Google Scholar 

  3. Li, J., et al.: Activity-based profiling for energy harvesting estimation. In: IPSN, pp. 326–327 (2023)

    Google Scholar 

  4. Abusafia, A., Bouguettaya, A., Lakhdari, A.: Maximizing consumer satisfaction of IoT energy services. In: Troya, J., Medjahed, B., Piattini, M., Yao, L., Fernández, P., Ruiz-Cortés, A. (eds.) Service-Oriented Computing. ICSOC 2022. Lecture Notes in Computer Science, vol. 13740, pp. 395–412. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20984-0_28

  5. Fang, W., et al.: Fair scheduling in resonant beam charging for IoT devices. IEEE IoT 6(1), 641–653 (2018)

    Google Scholar 

  6. Abusafia, A., Lakhdari, A., Bouguettaya, A.: Service-based wireless energy crowdsourcing. In: Troya, J., Medjahed, B., Piattini, M., Yao, L., Fernández, P., Ruiz-Cortés, A. (eds.) Service-Oriented Computing. ICSOC 2022, LNCS, vol. 13740, pp. 653–668. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20984-0_47

  7. Dolcourt, J.: Over-the-air wireless charging will come to smartphones (2019)

    Google Scholar 

  8. Lakhdari, A., et al.: Crowdsharing wireless energy services. In: CIC, pp. 18–24. IEEE (2020)

    Google Scholar 

  9. Feng, H., et al.: Advances in high-power wireless charging systems: overview and design considerations. TTE 6(3), 886–919 (2020)

    Google Scholar 

  10. Abusafia, A., et al.: Quality of experience optimization in IoT energy services. In: ICWS, IEEE (2022)

    Google Scholar 

  11. Lakhdari, A., et al.: Elastic composition of crowdsourced IoT energy services. In: EAI Mobiquitous (2020)

    Google Scholar 

  12. Lakhdari, A., Bouguettaya, A.: Fluid composition of intermittent IoT energy services. In: SCC, pp. 329–336. IEEE (2020)

    Google Scholar 

  13. Abusafia, A., et al.: Incentive-based selection and composition of IoT energy services. In: IEEE SCC, pp. 304–311. IEEE (2020)

    Google Scholar 

  14. Mach, P., Becvar, Z.: Mobile edge computing: a survey on architecture and computation offloading. Comm. Surv. Tut. 19(3), 1628–1656 (2017)

    Article  Google Scholar 

  15. Abrishami, S., Kumar, P.: Using real-world store data for foot traffic forecasting. In: Big Data, pp. 1885–1890. IEEE (2018)

    Google Scholar 

  16. Zhang, J., et al.: Who is charging my phone? identifying wireless chargers via fingerprinting. IEEE Internet Things J. 8(4), 2992–2999 (2020)

    Article  Google Scholar 

  17. Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.-L.: Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)

    Article  Google Scholar 

  18. Bahutair, M., et al.: Multi-perspective trust management framework for crowdsourced IoT services. TSC 15(4), 2396–2409 (2021)

    Google Scholar 

  19. Kumar, V.: Algorithms for constraint-satisfaction problems: a survey. AI Mag. 13(1), 32–32 (1992)

    Google Scholar 

  20. Yang, P., et al.: Monitoring efficiency of IoT wireless charging. In: IEEE Percom (2023)

    Google Scholar 

  21. Yang, P., Abusafia, A., Lakhdari, A., Bouguettaya, A.: Towards peer-to-peer sharing of wireless energy services. In: Troya, J., et al. Service-Oriented Computing - ICSOC 2022 Workshops. ICSOC 2022. LNCS, vol. 13821, pp 388–392. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-26507-5_38

  22. Kruse, R., et al.: Data Structures and Program Design in C. Pearson, London (2007)

    Google Scholar 

  23. Yang, P., et al.: Energy loss prediction in IoT energy services. In: ICWS, IEEE (2023)

    Google Scholar 

  24. Abusafia, A., et al.: Flow-based energy services composition. In: TSC, IEEE (2023)

    Google Scholar 

  25. Kantarci, B., Mouftah, H.T.: Mobility-aware trustworthy crowdsourcing in cloud-centric internet of things. In: ISCC, pp. 1–6. IEEE (2014)

    Google Scholar 

  26. Cao, Z., et al.: Social Wi-Fi: Hotspot sharing with online friends. In: PIMRC, vol. 2015-Decem, pp. 2132–2137. IEEE, August 2015

    Google Scholar 

  27. Tahaei, H., Ko, K., Seo, W., Joo, S.: A QoE based trustable SDN framework for IoT devices in mobile edge computing. In: Park, J.J., Loia, V., Yi, G., Sung, Y. (eds.) CUTE/CSA -2017. LNEE, vol. 474, pp. 1147–1152. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7605-3_183

    Chapter  Google Scholar 

  28. Jain, V., Kumar, B.: A trusted resource allocation scheme in fog environment to satisfy high network demand. In: AJSE, pp. 1–18 (2022)

    Google Scholar 

  29. Ba-hutair, M.N., et al.: Multi-use trust in crowdsourced IoT services. IEEE Trans. Serv. Comput. 16(2), 1268–1281 (2022)

    Article  Google Scholar 

Download references

Acknowledgment

This research was partly made possible by LE220100078 and DP220101823 grants from the Australian Research Council. The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amani Abusafia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abusafia, A., Bouguettaya, A., Lakhdari, A., Yangui, S. (2023). Context-Aware Trustworthy IoT Energy Services Provisioning. In: Monti, F., Rinderle-Ma, S., Ruiz Cortés, A., Zheng, Z., Mecella, M. (eds) Service-Oriented Computing. ICSOC 2023. Lecture Notes in Computer Science, vol 14420. Springer, Cham. https://doi.org/10.1007/978-3-031-48424-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48424-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48423-0

  • Online ISBN: 978-3-031-48424-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics