Skip to main content

On the Use of Deep Learning Models for Automatic Animal Classification of Native Species in the Amazon

  • Conference paper
  • First Online:
Applications of Computational Intelligence (ColCACI 2023)

Abstract

Camera trap image analysis, although critical for habitat and species conservation, is often a manual, time-consuming, and expensive task. Thus, automating this process would allow large-scale research on biodiversity hotspots of large conspicuous mammals and bird species. This paper explores the use of deep learning species-level object detection and classification models for this task, using two state-of-the-art architectures, YOLOv5 and Faster R-CNN, for two species: white-lipped peccary and collared peccary. The dataset contains 7,733 images obtained after data augmentation from the Tiputini Biodiversity Station. The models were trained in 70% of the dataset, validated in 20%, and tested in 10% of the available data. The Faster R-CNN model achieved an average mAP (Mean Average Precision) of 0.26 at a 0.5 Intersection Over Union (IoU) threshold and 0.114 at a 0.5 to 0.95 IoU threshold, which is comparable with the original results of Faster R-CNN on the MS COCO dataset. Whereas, YOLOv5 achieved an average mAP of 0.5525 at a 0.5 IoU threshold, while its average mAP at a 0.5 to 0.95 IoU threshold is 0.37997. Therefore, the YOLOv5 model was shown to be more robust, having lower losses and a higher overall mAP value than Faster-RCNN and YOLOv5 trained on the MS COCO dataset. This is one of the first steps towards developing an automated camera trap analysis tool, allowing a large-scale analysis of population and habitat trends to benefit their conservation. The results suggest that hyperparameter fine-tuning would improve our models and allow us to extend this tool to other native species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aziz, L., Salam, M.S.B.H., Sheikh, U.U., Ayub, S.: Exploring deep learning-based architecture, strategies, applications and current trends in generic object detection: a comprehensive review. IEEE Access 8, 170461–170495 (2020)

    Article  Google Scholar 

  2. Bass, M.S., et al.: Global conservation significance of ecuador’s yasuní national park. PLoS ONE 5(1), e8767 (2010)

    Article  Google Scholar 

  3. Beery, S., Morris, D., Yang, S.: Efficient pipeline for camera trap image review. arXiv preprint arXiv:1907.06772 (2019)

  4. Blake, J.G., Mosquera, D., Guerra, J., Loiselle, B.A., Romo, D., Swing, K.: Yasuní-a hotspot for jaguars panthera onca (carnivora: Felidae)? camera-traps and jaguar activity at tiputini biodiversity station, ecuador. Rev. Biol. Trop. 62(2), 689–698 (2014)

    Article  Google Scholar 

  5. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  6. Bodla, N., Singh, B., Chellappa, R., Davis, L.: Improving object detection with one line of code. arxiv 2017. arXiv preprint arXiv:1704.04503 (2017)

  7. Cao, C., et al.: An improved faster R-CNN for small object detection. IEEE Access 7, 106838–106846 (2019)

    Article  Google Scholar 

  8. Carl, C., Schönfeld, F., Profft, I., Klamm, A., Landgraf, D.: Automated detection of European wild mammal species in camera trap images with an existing and pre-trained computer vision model. Eur. J. Wildl. Res. 66(4), 1–7 (2020)

    Article  Google Scholar 

  9. Cheema, G.S., Anand, S.: Automatic detection and recognition of individuals in patterned species. In: Altun, Y., et al. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10536, pp. 27–38. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71273-4_3

    Chapter  Google Scholar 

  10. Choiński, M., Rogowski, M., Tynecki, P., Kuijper, D.P.J., Churski, M., Bubnicki, J.W.: A first step towards automated species recognition from camera trap images of mammals using AI in a European temperate forest. In: Saeed, K., Dvorský, J. (eds.) CISIM 2021. LNCS, vol. 12883, pp. 299–310. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84340-3_24

    Chapter  Google Scholar 

  11. Deng, Z., Sun, H., Zhou, S., Zhao, J., Lei, L., Zou, H.: Multi-scale object detection in remote sensing imagery with convolutional neural networks. ISPRS J. Photogramm. Remote. Sens. 145, 3–22 (2018)

    Article  Google Scholar 

  12. Espinosa, S., Celis, G., Branch, L.C.: When roads appear jaguars decline: increased access to an Amazonian wilderness area reduces potential for jaguar conservation. PLoS ONE 13(1), e0189740 (2018)

    Article  Google Scholar 

  13. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  14. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  15. He, Y., Weng, Q.: High Spatial Resolution Remote Sensing: Data, Analysis, and Applications. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  16. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  17. Jocher, G., et al.: ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference (2022). https://doi.org/10.5281/zenodo.6222936

  18. Li, Z., Tian, X., Liu, X., Liu, Y., Shi, X.: A two-stage industrial defect detection framework based on improved-yolov5 and optimized-inception-resnetv2 models. Appl. Sci. 12(2), 834 (2022)

    Article  Google Scholar 

  19. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  20. Liu, S., Huang, D., Wang, Y.: Adaptive NMS: refining pedestrian detection in a crowd. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6459–6468 (2019)

    Google Scholar 

  21. Peng, J., et al.: Wild animal survey using UAS imagery and deep learning: modified faster R-CNN for kiang detection in Tibetan plateau. ISPRS J. Photogramm. Remote. Sens. 169, 364–376 (2020)

    Article  Google Scholar 

  22. Rahman, M.A., Wang, Y.: Optimizing intersection-over-union in deep neural networks for image segmentation. In: Bebis, G., et al. (eds.) ISVC 2016. LNCS, vol. 10072, pp. 234–244. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50835-1_22

    Chapter  Google Scholar 

  23. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  24. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016)

  25. Norouzzadeh, M.S., et al.: Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proc. Natl. Acad. Sci. 115(25), E5716–E5725 (2018)

    Google Scholar 

  26. Shim, K., Barczak, A., Reyes, N., Ahmed, N.: Small mammals and bird detection using IoT devices. In: 2021 36th International Conference on Image and Vision Computing New Zealand (IVCNZ), pp. 1–6. IEEE (2021)

    Google Scholar 

  27. Smith, L.N.: A disciplined approach to neural network hyper-parameters: part 1-learning rate, batch size, momentum, and weight decay. arXiv preprint arXiv:1803.09820 (2018)

  28. Srivastava, S., Divekar, A.V., Anilkumar, C., Naik, I., Kulkarni, V., Pattabiraman, V.: Comparative analysis of deep learning image detection algorithms. J. Big Data 8(1), 1–27 (2021). https://doi.org/10.1186/s40537-021-00434-w

    Article  Google Scholar 

  29. Suárez, E., Zapata-Ríos, G., Utreras, V., Strindberg, S., Vargas, J.: Controlling access to oil roads protects forest cover, but not wildlife communities: a case study from the rainforest of Yasuní Biosphere Reserve (Ecuador). Anim. Conserv. 16(3), 265–274 (2013)

    Article  Google Scholar 

  30. Tang, L., Li, F., Lan, R., Luo, X.: A small object detection algorithm based on improved faster RCNN. In: International Symposium on Artificial Intelligence and Robotics 2021, vol. 11884, pp. 653–661. SPIE (2021)

    Google Scholar 

  31. Trolliet, F., Vermeulen, C., Huynen, M.C., Hambuckers, A.: Use of camera traps for wildlife studies: a review. Biotechnol. Agron. Soc. Environ. 18(3), 446–454 (2014)

    Google Scholar 

  32. Vargas-Felipe, M., Pellegrin, L., Guevara-Carrizales, A.A., López-Monroy, A.P., Escalante, H.J., Gonzalez-Fraga, J.A.: Desert bighorn sheep (ovis canadensis) recognition from camera traps based on learned features. Eco. Inform. 64, 101328 (2021)

    Article  Google Scholar 

  33. Wang, X., Xiao, T., Jiang, Y., Shao, S., Sun, J., Shen, C.: Repulsion loss: detecting pedestrians in a crowd. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7774–7783 (2018)

    Google Scholar 

  34. Weckel, M., Giuliano, W., Silver, S.: Jaguar (panthera onca) feeding ecology: distribution of predator and prey through time and space. J. Zool. 270(1), 25–30 (2006)

    Article  Google Scholar 

  35. Yang, Q., Xiao, D., Lin, S.: Feeding behavior recognition for group-housed pigs with the faster R-CNN. Comput. Electron. Agric. 155, 453–460 (2018)

    Article  Google Scholar 

  36. Yang, Z., Sinnott, R., Ke, Q., Bailey, J.: Individual feral cat identification through deep learning. In: 2021 IEEE/ACM 8th International Conference on Big Data Computing, Applications and Technologies (BDCAT 2021), pp. 101–110 (2021)

    Google Scholar 

  37. Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Occlusion-aware R-CNN: detecting pedestrians in a crowd. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 637–653 (2018)

    Google Scholar 

Download references

Acknowledgment

The authors express their gratitude to the Tiputini Biodiversity Station for providing the data used in this study, which were collected by all researchers and staff working on the TBS-Camara trap project. The station is affiliated with USFQ. Additionally, the authors extend thanks to the Applied Signal Processing and Machine Learning Research Group at USFQ for supplying the computing infrastructure (NVidia DGX workstation) employed for implementing and executing the developed source code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego S. Benítez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zurita, MJ. et al. (2024). On the Use of Deep Learning Models for Automatic Animal Classification of Native Species in the Amazon. In: Orjuela-Cañón, A.D., Lopez, J.A., Arias-Londoño, J.D. (eds) Applications of Computational Intelligence. ColCACI 2023. Communications in Computer and Information Science, vol 1865. Springer, Cham. https://doi.org/10.1007/978-3-031-48415-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48415-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48414-8

  • Online ISBN: 978-3-031-48415-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics