Skip to main content

Climate Change and Its Implications on Food Security in the Great Lakes Region

  • Chapter
  • First Online:
Climate Change and Socio-political Violence in Sub-Saharan Africa in the Anthropocene

Abstract

Climate change (CC) is an existential threat globally, and the Great Lakes Region (GLR) is not immune to the impacts of these extreme events. Erratic weather and extreme events such as rainfall and droughts have serious impacts on agriculture, a major income pillar for African smallholder farmers, and an essential source of food. Climate vulnerability in the GLR is exacerbated by multiple biophysical, political, and socio-economic constraints, thus limiting adaptive capacity within the GLR. Climate vulnerabilities in the GLR suggest that research and development actors, including farmers themselves, must take action to invest massively in mechanisms that can mitigate the situation. In light of the emerging literature, this chapter documents the most recent literature on climate change and its impact on food security, including the impact on food resources, food availability, food accessibility, food utilisation and stability of food products, as well as overall food productivity, water sources and arable land in the GLR and proposes adaptation strategies based on climate-smart agriculture (CSA) to alleviate the impacts of the ongoing CC.

Corresponding author: Mr Jackson Ishara is a lecturer at the Department of Food Science and Technology, Université Evangélique en Afrique, Bukavu, D.R. Congo; and at the Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya; Email: jackishara17@uea.ac.cd; jack.ishara@outlook.com; https://orcid.org/0000-0003-4789-4040

Dr Ayorinde Ogunyiola is aresearcher in the Department of Forestry & Natural Resources, Purdue University, West Lafayette, Indiana, USA and an Assistant Professor in the Department of Political Science and Sociology, Murray State University, KY, USA. Email: aogunyiola@murraystate.edu

Mrs Rehema Matendo is senior lecturer at the Department of Food Science and Technology, Université Evangélique en Afrique, Bukavu, D.R. Congo; and at the Department of Food Science and Nutrition, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya. Email: vecordcongoesther@gmail.com

Dr Jean Chrysostome K. Kiyala holds a PhD in Public Administration: Peace Studies from DUT; he is a Senior Lecturer at the International Centre of Nonviolence (DUT), Associate Professor and visiting lecturer at the Université de Bandundu and the Université Evangélique en Afrique (Democratic Republic of Congo); Emails: JeanK@dut.ac.za; kljeanchrysostome@gmail.com; ORCID: https://orcid.org/0000-0002-9587-0230

Professor Katcho Karume lectures at the Faculty of Agricultural and Environmental Studies, at the Université Evangélique en Afrique, P.O. Box 3323-Bukavu, D.R. Congo, and researcher at the Centre de Recherche en Géothermie, Bukavu, Democratic Republic of Congo; Emai: kkatcho@yahoo.com

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adnan, S., Ullah, K., & Ahmed, R. (2020). Variability in meteorological parameters and their impact on evapotranspiration in a humid zone of Pakistan. Meteorological Applications, 27(1), e1859.

    Article  Google Scholar 

  • Akhtar, N., Syakir Ishak, M.I., Bhawani, S.A., & Umar, K. (2021). Various natural and anthropogenic factors responsible for water quality degradation: A review. Water, 13(19), 2660.

    Article  CAS  Google Scholar 

  • Akrofi, S., Price, L.L., & Struik, P.C. (2012). HIV and severity of seasonal household food-related coping behaviors in rural Ghana. Ecology of Food and Nutrition, 51(2), 148–175.

    Article  Google Scholar 

  • Alegbeleye, O., & Sant'Ana, A. S. (2022). Impact of temperature, soil type and compost amendment on the survival, growth and persistence of Listeria monocytogenes of non-environmental (food-source associated) origin in soil. Science of The Total Environment, 843, 157033.

    Article  CAS  Google Scholar 

  • Ali, A., & Erenstein, O. (2017). Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Climate Risk Management, 16, 183–194.

    Article  Google Scholar 

  • Ali, S., Liu, Y., Ishaq, M., Shah, T., Abdullah, Ilyas, A., & Din, I. U. (2017). Climate change and its impact on the yield of major food crops: Evidence from Pakistan. Foods, 6(6), 39.

    Article  Google Scholar 

  • Allison, E. H., Perry, A. L., Badjeck, M. C., Neil Adger, W., Brown, K., Conway, D., ... & Dulvy, N. K. (2009). Vulnerability of national economies to the impacts of climate change on fisheries. Fish and Fisheries, 10(2), 173–196.

    Google Scholar 

  • Antwi-Agyei, P., & Stringer, L. C. (2021). Improving the effectiveness of agricultural extension services in supporting farmers to adapt to climate change: Insights from northeastern Ghana. Climate Risk Management, 32, 100304.

    Article  Google Scholar 

  • Aschwanden, A., Fahnestock, M. A., Truffer, M., Brinkerhoff, D. J., Hock, R., Khroulev, C., ... & Khan, S. A. (2019). Contribution of the Greenland Ice Sheet to sea level over the next millennium. Science Advances, 5(6), eaav9396.

    Google Scholar 

  • Autret, B., Mary, B., Chenu, C., Balabane, M., Girardin, C., Bertrand, M., ... & Beaudoin, N. (2016). Alternative arable cropping systems: a key to increase soil organic carbon storage? Results from a 16 year field experiment. Agriculture, Ecosystems & Environment, 232, 150–164.

    Google Scholar 

  • Ayugi, B., Eresanya, E. O., Onyango, A. O., Ogou, F. K., Okoro, E. C., Okoye, C. O., ... & Ongoma, V. (2022). Review of meteorological drought in Africa: historical trends, impacts, mitigation measures, and prospects. Pure and Applied Geophysics, 179(4), 1365–1386.

    Google Scholar 

  • Azadi, H., Moghaddam, S. M., Burkart, S., Mahmoudi, H., Van Passel, S., Kurban, A., & Lopez-Carr, D. (2021). Rethinking resilient agriculture: From climate-smart agriculture to vulnerable-smart agriculture. Journal of Cleaner Production, 319, 128602.

    Article  Google Scholar 

  • Bahram, M., Hildebrand, F., Forslund, S. K., Anderson, J. L., Soudzilovskaia, N. A., Bodegom, P. M., ... & Bork, P. (2018). Structure and function of the global topsoil microbiome. Nature, 560(7717), 233–237.

    Google Scholar 

  • Barnett, J., Evans, L. S., Gross, C., Kiem, A. S., Kingsford, R. T., Palutikof, J. P., ... & Smithers, S. G. (2015). From barriers to limits to climate change adaptation: path dependency and the speed of change. Ecology and Society, 20(3).

    Google Scholar 

  • Bates, B., Kundzewicz, Z., & Wu, S. (2008). Climate change and water. Intergovernmental Panel on Climate Change Secretariat.

    Google Scholar 

  • Bebber, D. P. (2019). Climate change effects on Black Sigatoka disease of banana. Philosophical Transactions of the Royal Society B, 374(1775), 20180269.

    Article  Google Scholar 

  • Bell, J. E., Brown, C. L., Conlon, K., Herring, S., Kunkel, K. E., Lawrimore, J., ... & Uejio, C. (2018). Changes in extreme events and the potential impacts on human health. Journal of the Air & Waste Management Association, 68(4), 265–287.

    Google Scholar 

  • Berazneva, J., & Lee, D. R. (2013). Explaining the African food riots of 2007–2008: An empirical analysis. Food Policy, 39, 28–39.

    Article  Google Scholar 

  • Bergquist, M., Nilsson, A., Harring, N., & Jagers, S. C. (2022). Meta-analyses of fifteen determinants of public opinion about climate change taxes and laws. Nature Climate Change, 12(3), 235–240.

    Article  Google Scholar 

  • Bhaga, T. D., Dube, T., Shekede, M. D., & Shoko, C. (2020). Impacts of climate variability and drought on surface water resources in Sub-Saharan Africa using remote sensing: A review. Remote Sensing, 12(24), 4184.

    Article  Google Scholar 

  • Biglari, T., Maleksaeidi, H., Eskandari, F., & Jalali, M. (2019). Livestock insurance as a mechanism for household resilience of livestock herders to climate change: Evidence from Iran. Land Use Policy, 87, 104043.

    Article  Google Scholar 

  • Bonsor, H. C., MacDonald, A. M., & Calow, R. C. (2010). Potential impact of climate change on improved and unimproved water supplies in Africa. RSC Issues in Environmental Science and Technology, 31, 25–50.

    Google Scholar 

  • Castex, V., Beniston, M., Calanca, P., Fleury, D., & Moreau, J. (2018). Pest management under climate change: The importance of understanding tritrophic relations. Science of the Total Environment, 616, 397–407.

    Article  Google Scholar 

  • Challinor, A., Wheeler, T., Garforth, C., Craufurd, P., & Kassam, A. (2007). Assessing the vulnerability of food crop systems in Africa to climate change. Climatic Change, 83, 381–399.

    Article  Google Scholar 

  • Champer, J., Reeves, R., Oh, S. Y., Liu, C., Liu, J., Clark, A. G., & Messer, P. W. (2017). Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations. PLoS Genetics, 13(7), e1006796.

    Article  Google Scholar 

  • Chandio, A. A., Jiang, Y., Akram, W., Adeel, S., Irfan, M., & Jan, I. (2021). Addressing the effect of climate change in the framework of financial and technological development on cereal production in Pakistan. Journal of Cleaner Production, 288, 125637.

    Article  Google Scholar 

  • Change, I. C. (2014). Impacts, adaptation and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental Panel on Climate Change, 1132.

    Google Scholar 

  • Change, F. C. (2020). Unpacking the Burden on Food Safety. FAO—Food and Agriculture Organization of the United Nations: Rome, Italy.

    Google Scholar 

  • Collier, R. J., Baumgard, L. H., Zimbelman, R. B., & Xiao, Y. (2019). Heat stress: physiology of acclimation and adaptation. Animal Frontiers, 9(1), 12–19.

    Article  Google Scholar 

  • Connolly-Boutin, L., & Smit, B. (2016). Climate change, food security, and livelihoods in sub-Saharan Africa. Regional Environmental Change, 16, 385–399.

    Article  Google Scholar 

  • Coscarelli, R., Aguilar, E., Petrucci, O., Vicente-Serrano, S. M., & Zimbo, F. (2021). The potential role of climate indices to explain floods, mass-movement events and wildfires in southern Italy. Climate, 9(11), 156.

    Article  Google Scholar 

  • Davidson, D. J. (2018). Rethinking adaptation: Emotions, evolution, and climate change. Nature and Culture, 13(3), 378–402.

    Article  Google Scholar 

  • Davidson, O., Halsnaes, K., Huq, S., Kok, M., Metz, B., Sokona, Y., & Verhagen, J. (2003). The development and climate nexus: the case of sub-Saharan Africa. Climate Policy, 3(sup1), S97-S113.

    Article  Google Scholar 

  • Debaeke, P., Pellerin, S., & Scopel, E. (2017). Climate-smart cropping systems for temperate and tropical agriculture: mitigation, adaptation and trade-offs. Cahiers Agricultures, 26(3), 34002.

    Article  Google Scholar 

  • Deen-Swarray, M., Odularu, G., & Adekunle, B. (2020). Introduction: nutrition, sustainable agriculture and climate change issues in Africa. Nutrition, Sustainable Agriculture and Climate Change in Africa: Issues and Innovative Strategies, 1–11.

    Google Scholar 

  • Descheemaeker, K., Oosting, S. J., Homann-Kee Tui, S., Masikati, P., Falconnier, G. N., & Giller, K. E. (2016). Climate change adaptation and mitigation in smallholder crop–livestock systems in sub-Saharan Africa: a call for integrated impact assessments. Regional Environmental Change, 16, 2331–2343.

    Article  Google Scholar 

  • Deutsch, C. A., Tewksbury, J. J., Tigchelaar, M., Battisti, D. S., Merrill, S. C., Huey, R. B., & Naylor, R. L. (2018). Increase in crop losses to insect pests in a warming climate. Science, 361(6405), 916–919.

    Article  CAS  Google Scholar 

  • Devereux, S. (2007). The impact of droughts and floods on food security and policy options to alleviate negative effects. Agricultural Economics, 37, 47–58.

    Article  Google Scholar 

  • Duran-Encalada, J. A., Paucar-Caceres, A., Bandala, E. R., & Wright, G. H. (2017). The impact of global climate change on water quantity and quality: A system dynamics approach to the US–Mexican transborder region. European Journal of Operational Research, 256(2), 567–581.

    Article  Google Scholar 

  • Ebi, K. L., & Hess, J. J. (2020). Health Risks Due To Climate Change: Inequity In Causes And Consequences: Study examines health risks due to climate change. Health Affairs, 39(12), 2056–2062.

    Article  Google Scholar 

  • Fao, F. (2018). The impact of disasters and crises on agriculture and food security. Report.

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO). (2017). The impact of disasters and crises on agriculture and food security.

    Google Scholar 

  • Ferrante, L., Barbosa, R. I., Duczmal, L., & Fearnside, P. M. (2021). Brazil’s planned exploitation of Amazonian indigenous lands for commercial agriculture increases risk of new pandemics. Regional Environmental Change, 21(3), 81.

    Article  Google Scholar 

  • Fones, H. N., & Gurr, S. J. (2017). NOXious gases and the unpredictability of emerging plant pathogens under climate change. BMC Biology, 15(1), 1–9.

    Article  Google Scholar 

  • Gaines, S. D., Costello, C., Owashi, B., Mangin, T., Bone, J., Molinos, J. G., ... & Ovando, D. (2018). Improved fisheries management could offset many negative effects of climate change. Science Advances, 4(8), eaao1378.

    Google Scholar 

  • Galstyan, H., Shiri, B., & Safaryan, T. (2022). Heatwaves in Southern Armenia in the context of climate change. International Journal of Climatology, 42(6), 3431–3447.

    Article  Google Scholar 

  • Gardezi, M., Michael, S., Stock, R., Vij, S., Ogunyiola, A., & Ishtiaque, A. (2022). Prioritizing climate‐smart agriculture: An organizational and temporal review. Wiley Interdisciplinary Reviews: Climate Change, 13(2), e755.

    Google Scholar 

  • Gartaula, H., Patel, K., Johnson, D., Devkota, R., Khadka, K., & Chaudhary, P. (2017). From food security to food wellbeing: examining food security through the lens of food wellbeing in Nepal’s rapidly changing agrarian landscape. Agriculture and Human Values, 34, 573–589.

    Article  Google Scholar 

  • Gezie, M. (2019). Farmer’s response to climate change and variability in Ethiopia: A review. Cogent Food & Agriculture, 5 (1), 1613770.

    Article  Google Scholar 

  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., ... & Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science, 327(5967), 812–818.

    Google Scholar 

  • Gupta, A. K., Negi, M., Nandy, S., Alatalo, J. M., Singh, V., & Pandey, R. (2019). Assessing the vulnerability of socio-environmental systems to climate change along an altitude gradient in the Indian Himalayas. Ecological Indicators, 106, 105512.

    Article  Google Scholar 

  • Haile, M. G., Wossen, T., Tesfaye, K., & von Braun, J. (2017). Impact of climate change, weather extremes, and price risk on global food supply. Economics of Disasters and Climate Change, 1, 55–75.

    Article  Google Scholar 

  • Hammond, T. T., Palme, R., & Lacey, E. A. (2018). Glucocorticoid–environment relationships align with responses to environmental change in two co‐occurring congeners. Ecological Applications, 28(7), 1683–1693.

    Article  Google Scholar 

  • Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D. W., & Medina-Elizade, M. (2006). Global temperature change. Proceedings of the National Academy of Sciences, 103(39), 14288–14293.

    Article  CAS  Google Scholar 

  • Hatfield, J. L., & Dold, C. (2018). Agroclimatology and wheat production: coping with climate change. Frontiers in Plant Science, 9, 224.

    Article  Google Scholar 

  • Hatfield, J. L., & Prueger, J. H. (2015). Challenge for future agriculture. Crop wild relatives and climate change, 24–43.

    Google Scholar 

  • Hayes, K., Blashki, G., Wiseman, J., Burke, S., & Reifels, L. (2018). Climate change and mental health: risks, impacts and priority actions. International Journal of Mental Health Systems, 12(1), 1–12.

    Article  Google Scholar 

  • Heal, G., & Millner, A. (2014). Reflections: Uncertainty and decision making in climate change economics. Review of Environmental Economics and Policy, 8(1), 120–137.

    Article  Google Scholar 

  • Hegerl, G. C., Brönnimann, S., Cowan, T., Friedman, A. R., Hawkins, E., Iles, C., ... & Undorf, S. (2019). Causes of climate change over the historical record. Environmental Research Letters, 14(12), 123006.

    Google Scholar 

  • Hoegh-Guldberg, O., Jacob, D., Taylor, M., Guillén Bolaños, T., Bindi, M., Brown, S., ... & Zhou, G. (2019). The human imperative of stabilizing global climate change at 1.5 C. Science, 365(6459), eaaw6974.

    Google Scholar 

  • Hoekstra, A. Y., Buurman, J., & Van Ginkel, K. C. (2018). Urban water security: A review. Environmental Research Letters, 13(5), 053002.

    Article  Google Scholar 

  • Hollowed, A. B., Barange, M., Beamish, R. J., Brander, K., Cochrane, K., Drinkwater, K., ... & Yamanaka, Y. (2013). Projected impacts of climate change on marine fish and fisheries. ICES Journal of Marine Science, 70(5), 1023–1037.

    Google Scholar 

  • Hussain, A., Ali, S., Rizwan, M., ur Rehman, M. Z., Javed, M. R., Imran, M., ... & Nazir, R. (2018). Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environmental Pollution, 242, 1518–1526.

    Google Scholar 

  • Iizumi, T., & Ramankutty, N. (2016). Changes in yield variability of major crops for 1981–2010 explained by climate change. Environmental Research Letters, 11(3), 034003.

    Article  Google Scholar 

  • Iniguez-Gallardo, V., Lenti Boero, D., & Tzanopoulos, J. (2021). Climate change and emotions: analysis of people’s emotional states in southern Ecuador. Frontiers in Psychology, 12, 644240.

    Article  Google Scholar 

  • Ishara, J., Ayagirwe, R., Karume, K., Mushagalusa, G. N., Bugeme, D., Niassy, S., ... & Kinyuru, J. (2022). Inventory reveals wide biodiversity of edible insects in the Eastern Democratic Republic of Congo. Scientific Reports, 12(1), 1576.

    Google Scholar 

  • Ishara, J., Buzera, A., Mushagalusa, G. N., Hammam, A. R., Munga, J., Karanja, P., & Kinyuru, J. (2022). Nutraceutical potential of mushroom bioactive metabolites and their food functionality. Journal of Food Biochemistry, 46(1), e14025.

    Article  CAS  Google Scholar 

  • Ishara, J., Cokola, M. C., Buzera, A., Mmari, M., Bugeme, D., Niassy, S., ... & Kinyuru, J. (2023). Edible insect biodiversity and anthropo-entomophagy practices in Kalehe and Idjwi territories, DR Congo. Journal of Ethnobiology and Ethnomedicine, 19(1), 3.

    Google Scholar 

  • Israel, D. C., & Briones, R. M. (2012). Impacts of natural disasters on agriculture, food security, and natural resources and environment in the Philippines (No. 2012–36). PIDS discussion paper series.

    Google Scholar 

  • Jaramillo, J., Muchugu, E., Vega, F. E., Davis, A., Borgemeister, C., & Chabi-Olaye, A. (2011). Some like it hot: the influence and implications of climate change on coffee berry borer (Hypothenemus hampei) and coffee production in East Africa. PloS one, 6(9), e24528.

    Article  CAS  Google Scholar 

  • Jiménez-Donaire, M. D. P., Tarquis, A., & Giráldez, J. V. (2020). Evaluation of a combined drought indicator and its potential for agricultural drought prediction in southern Spain. Natural Hazards and Earth System Sciences, 20(1), 21–33.

    Article  Google Scholar 

  • Johnson, N. C., Amaya, D. J., Ding, Q., Kosaka, Y., Tokinaga, H., & Xie, S. P. (2020). Multidecadal modulations of key metrics of global climate change. Global and Planetary Change, 188, 103149.

    Article  Google Scholar 

  • Jones, C., Hine, D. W., & Marks, A. D. (2017). The future is now: Reducing psychological distance to increase public engagement with climate change. Risk Analysis, 37(2), 331–341.

    Article  Google Scholar 

  • Kaack, L. H., Donti, P. L., Strubell, E., Kamiya, G., Creutzig, F., & Rolnick, D. (2022). Aligning artificial intelligence with climate change mitigation. Nature Climate Change, 12(6), 518–527.

    Article  Google Scholar 

  • Negatu, W., Iassen, A., & Kebede, A. (2011). A comparative analysis of vulnerability of pastoralists and agro-pastoralists to climate change: a case study in Yabello Woreda of Oromia Region, Ethiopia. Ethiopian Journal of Development Research, 33(1), 61–95.

    Google Scholar 

  • Knox, J., Hess, T., Daccache, A., & Wheeler, T. (2012). Climate change impacts on crop productivity in Africa and South Asia. Environmental Research Letters, 7(3), 034032.

    Article  Google Scholar 

  • Kramer, R. D., Ishii, H. R., Carter, K. R., Miyazaki, Y., Cavaleri, M. A., Araki, M. G., ... & Hara, C. (2020). Predicting effects of climate change on productivity and persistence of forest trees. Ecological Research, 35(4), 562–574.

    Google Scholar 

  • Kumar, L., Chhogyel, N., Gopalakrishnan, T., Hasan, M. K., Jayasinghe, S. L., Kariyawasam, C. S., ... & Ratnayake, S. (2022). Climate change and future of agri-food production. In Future Foods (pp. 49–79). Academic Press.

    Google Scholar 

  • Lam, V. W., Cheung, W. W., Reygondeau, G., & Sumaila, U. R. (2016). Projected change in global fisheries revenues under climate change. Scientific Reports, 6(1), 32607.

    Article  CAS  Google Scholar 

  • Leauthaud, C., Belaud, G., Duvail, S., Moussa, R., Grünberger, O., & Albergel, J. (2013). Characterizing floods in the poorly gauged wetlands of the Tana River Delta, Kenya, using a water balance model and satellite data. Hydrology and Earth System Sciences, 17(8), 3059–3075.

    Article  Google Scholar 

  • Lipper, L., Thornton, P., Campbell, B. M., Baedeker, T., Braimoh, A., Bwalya, M., ... & Torquebiau, E. F. (2014). Climate-smart agriculture for food security. Nature Climate Change, 4(12), 1068–1072.

    Google Scholar 

  • Lloyd, S. J., Kovats, R. S., & Chalabi, Z. (2011). Climate change, crop yields, and undernutrition: development of a model to quantify the impact of climate scenarios on child undernutrition. Environmental Health Perspectives, 119(12), 1817–1823.

    Article  Google Scholar 

  • Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333(6042), 616–620.

    Article  CAS  Google Scholar 

  • Lorenz, R., Argüeso, D., Donat, M. G., Pitman, A. J., van den Hurk, B., Berg, A., ... & Seneviratne, S. I. (2016). Influence of land‐atmosphere feedbacks on temperature and precipitation extremes in the GLACE‐CMIP5 ensemble. Journal of Geophysical Research: Atmospheres, 121(2), 607–623.

    Google Scholar 

  • MacDonald, A. M., Bonsor, H. C., Dochartaigh, B. É. Ó., & Taylor, R. G. (2012). Quantitative maps of groundwater resources in Africa. Environmental Research Letters, 7(2), 024009.

    Article  Google Scholar 

  • Mach, K. J., Mastrandrea, M. D., Bilir, T. E., & Field, C. B. (2016). Understanding and responding to danger from climate change: the role of key risks in the IPCC AR5. Climatic Change, 136, 427–444.

    Article  Google Scholar 

  • Mapulanga, A. M., & Naito, H. (2019). Effect of deforestation on access to clean drinking water. Proceedings of the National Academy of Sciences, 116(17), 8249–8254.

    Article  CAS  Google Scholar 

  • Martinich, J., & Crimmins, A. (2019). Climate damages and adaptation potential across diverse sectors of the United States. Nature Climate Change, 9(5), 397–404.

    Article  Google Scholar 

  • Masipa, T. (2017). The impact of climate change on food security in South Africa: Current realities and challenges ahead. Jàmbá: Journal of Disaster Risk Studies, 9(1), 1–7.

    Google Scholar 

  • Mekonnen, Adisu, Ayele Tessema, Zerhun Ganewo, and Ashenafi Haile. 2021. “Climate Change Impacts on Household Food Security and Farmers Adaptation Strategies.” Journal of Agriculture and Food Research 6: 100197.

    Article  Google Scholar 

  • Mir, R. A., Bhat, B. A., Yousuf, H., Islam, S. T., Raza, A., Rizvi, M. A., ... & Zargar, S. M. (2022). Multidimensional role of silicon to activate resilient plant growth and to mitigate abiotic stress. Frontiers in Plant Science, 13, 819658.

    Google Scholar 

  • Misiou, O., & Koutsoumanis, K. (2022). Climate change and its implications for food safety and spoilage. Trends in Food Science & Technology, 126, 142–152.

    Article  CAS  Google Scholar 

  • Misselhorn, A. A. (2005). What drives food insecurity in southern Africa? A meta-analysis of household economy studies. Global Environmental Change, 15(1), 33–43.

    Article  Google Scholar 

  • Moon, T., Ahlstrøm, A., Goelzer, H., Lipscomb, W., & Nowicki, S. (2018). Rising oceans guaranteed: Arctic land ice loss and sea level rise. Current Climate Change Reports, 4, 211–222.

    Article  Google Scholar 

  • Muluneh, A. (2020). Impact of climate change on soil water balance, maize production, and potential adaptation measures in the Rift Valley drylands of Ethiopia. Journal of Arid Environments, 179, 104195.

    Article  Google Scholar 

  • Mupangwa, W., Nyagumbo, I., Liben, F., Chipindu, L., Craufurd, P., & Mkuhlani, S. (2021). Maize yields from rotation and intercropping systems with different legumes under conservation agriculture in contrasting agro-ecologies. Agriculture, Ecosystems & Environment, 306, 107170.

    Article  Google Scholar 

  • Myers, B. J., Lynch, A. J., Bunnell, D. B., Chu, C., Falke, J. A., Kovach, R. P., ... & Paukert, C. P. (2017). Global synthesis of the documented and projected effects of climate change on inland fishes. Reviews in Fish Biology and Fisheries, 27, 339–361.

    Google Scholar 

  • Myhre, G., Forster, P. M., Samset, B. H., Hodnebrog, Ø., Sillmann, J., Aalbergsjø, S. G., ... & Zwiers, F. (2017). PDRMIP: A precipitation driver and response model intercomparison project—Protocol and preliminary results. Bulletin of the American Meteorological Society, 98(6), 1185–1198.

    Google Scholar 

  • Ndehedehe, C. E., Agutu, N. O., Ferreira, V. G., & Getirana, A. (2020). Evolutionary drought patterns over the Sahel and their teleconnections with low frequency climate oscillations. Atmospheric Research, 233, 104700.

    Article  Google Scholar 

  • Negatu, W., Iassen, A., & Kebede, A. (2011). A comparative analysis of vulnerability of pastoralists and agro-pastoralists to climate change: a case study in Yabello Woreda of Oromia Region, Ethiopia. Ethiopian Journal of development research, 33(1), 61–95.

    Google Scholar 

  • Nelson, G. C., Van Der Mensbrugghe, D., Ahammad, H., Blanc, E., Calvin, K., Hasegawa, T., ... & Willenbockel, D. (2014). Agriculture and climate change in global scenarios: why don't the models agree. Agricultural Economics, 45(1), 85–101.

    Google Scholar 

  • Nhemachena, C., Nhamo, L., Matchaya, G., Nhemachena, C. R., Muchara, B., Karuaihe, S. T., & Mpandeli, S. (2020). Climate change impacts on water and agriculture sectors in Southern Africa: Threats and opportunities for sustainable development. Water, 12(10), 2673.

    Article  Google Scholar 

  • Change, I. C. (2014). Impacts, adaptation and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental Panel on Climate Change, 1132.

    Google Scholar 

  • Nicholls, T., Norgrove, L., & Masters, G. (2008). Innovative solutions to new invaders: managing agricultural pests, diseases and weeds under climate change (No. 654-2016-44584).

    Google Scholar 

  • Ogunyiola, A., Gardezi, M., & Vij, S. (2022). Smallholder farmers’ engagement with climate smart agriculture in Africa: role of local knowledge and upscaling. Climate Policy, 22(4), 411–426.

    Article  Google Scholar 

  • Olisah, C., Okoh, O. O., & Okoh, A. I. (2020). Occurrence of organochlorine pesticide residues in biological and environmental matrices in Africa: A two-decade review. Heliyon, 6(3).

    Google Scholar 

  • Osei-Amponsah, R., Chauhan, S. S., Leury, B. J., Cheng, L., Cullen, B., Clarke, I. J., & Dunshea, F. R. (2019). Genetic selection for thermotolerance in ruminants. Animals, 9(11), 948.

    Article  Google Scholar 

  • Panpakdee, C., & Limnirankul, B. (2018). Indicators for assessing social-ecological resilience: A case study of organic rice production in northern Thailand. Kasetsart Journal of Social Sciences, 39(3), 414–421.

    Article  Google Scholar 

  • Peña-Lévano, L. M., Taheripour, F., & Tyner, W. E. (2019). Climate change interactions with agriculture, forestry sequestration, and food security. Environmental and Resource Economics, 74, 653–675.

    Article  Google Scholar 

  • Pierrehumbert, R. T. (2000). Climate change and the tropical Pacific: The sleeping dragon wakes. Proceedings of the National Academy of Sciences, 97(4), 1355–1358.

    Article  CAS  Google Scholar 

  • Stablein, M. J., Cruz, J. G., Fidan, E. N., Talbot, J., Reed, S. P., Walters, R. S., ... & Rodríguez, L. F. (2022). Compound [ing] disasters in Puerto Rico: Pathways for virtual transdisciplinary collaboration to enhance community resilience. Global Environmental Change, 76, 102558.

    Google Scholar 

  • Stuart-Smith, R., Otto, F. E., & Wetzer, T. (2022). Liability for Climate Change Impacts: the Role of Climate Attribution Science. Rupert F Stuart-Smith, Friederike EL Otto & Thom Wetzer, Liability for Climate Change Impacts: the Role of Climate Attribution Science, in Elbert R De Jong et al (eds) Corporate Responsibility and Liability in Relation to Climate Change (Intersentia 2022).

    Google Scholar 

  • Pörtner, H. O., Roberts, D. C., Adams, H., Adler, C., Aldunce, P., Ali, E., ... & Ibrahim, Z. Z. (2022). Climate change 2022: impacts, adaptation and vulnerability. IPCC.

    Google Scholar 

  • Powell, J. P., & Reinhard, S. (2016). Measuring the effects of extreme weather events on yields. Weather and Climate Extremes, 12, 69–79.

    Article  Google Scholar 

  • Pradeepkiran, J. A. (2019). Aquaculture role in global food security with nutritional value: a review. Translational Animal Science, 3(2), 903–910.

    Article  CAS  Google Scholar 

  • Ramalho, J. C., Pais, I. P., Leitão, A. E., Guerra, M., Reboredo, F. H., Máguas, C. M., ... & DaMatta, F. M. (2018). Can elevated air [CO2] conditions mitigate the predicted warming impact on the quality of coffee bean?. Frontiers in Plant Science, 9, 287.

    Google Scholar 

  • Ramesh, M., Palanikumar, K., & Reddy, K. H. (2017). Plant fibre based bio-composites: Sustainable and renewable green materials. Renewable and Sustainable Energy Reviews, 79, 558–584.

    Article  Google Scholar 

  • Ray, D. K., West, P. C., Clark, M., Gerber, J. S., Prishchepov, A. V., & Chatterjee, S. (2019). Climate change has likely already affected global food production. PloS One, 14(5), e0217148.

    Article  CAS  Google Scholar 

  • Raza, S., Zamanian, K., Ullah, S., Kuzyakov, Y., Virto, I., & Zhou, J. (2021). Inorganic carbon losses by soil acidification jeopardize global efforts on carbon sequestration and climate change mitigation. Journal of Cleaner Production, 315, 128036.

    Article  CAS  Google Scholar 

  • Reid, P., & Vogel, C. (2006). Living and responding to multiple stressors in South Africa—Glimpses from KwaZulu-Natal. Global Environmental Change, 16(2), 195–206.

    Article  Google Scholar 

  • Reikard, G. (2019). Volcanic emissions and air pollution: Forecasts from time series models. Atmospheric Environment: X, 1, 100001.

    Article  CAS  Google Scholar 

  • Rohde, R., Muller, R. A., Jacobsen, R., Muller, E., Perlmutter, S., Rosenfeld, A., ... & Wickham, C. (2013). A new estimate of the average Earth surface land temperature spanning 1753 to 2011. Geoinfor Geostat: An Overview 1: 1.

    Google Scholar 

  • Rojas-Downing, M. M., Nejadhashemi, A. P., Harrigan, T., & Woznicki, S. A. (2017). Climate change and livestock: Impacts, adaptation, and mitigation. Climate Risk Management, 16, 145–163.

    Article  Google Scholar 

  • Rosenzweig, C., Arnell, N. W., Ebi, K. L., Lotze-Campen, H., Raes, F., Rapley, C., ... & Warszawski, L. (2017). Assessing inter-sectoral climate change risks: the role of ISIMIP. Environmental Research Letters, 12(1), 010301.

    Google Scholar 

  • Roy, A., & Haider, M. Z. (2018). Stern review on the economics of climate change: implications for Bangladesh. International Journal of Climate Change Strategies and Management, 11(1), 100–117.

    Article  Google Scholar 

  • Schiermeier, Q. (2018). Climate as culprit. Nature, 560(7716), 20–22.

    Article  CAS  Google Scholar 

  • Seneviratne, S. I., Donat, M. G., Mueller, B., & Alexander, L. V. (2014). No pause in the increase of hot temperature extremes. Nature Climate Change, 4(3), 161–163.

    Article  Google Scholar 

  • Shah, T. (2020). Climate change and groundwater: India’s opportunities for mitigation and adaptation. In Water resources policies in South Asia (pp. 213–243). Routledge India.

    Google Scholar 

  • Shoaib, S. A., Khan, M. Z. K., Sultana, N., & Mahmood, T. H. (2021). Quantifying uncertainty in food security modeling. Agriculture, 11(1), 33.

    Article  Google Scholar 

  • Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123–131.

    Article  CAS  Google Scholar 

  • Sintayehu, D. W. (2018). Impact of climate change on biodiversity and associated key ecosystem services in Africa: a systematic review. Ecosystem Health and Sustainability, 4(9), 225–239.

    Article  Google Scholar 

  • Sloggy, M. R., Suter, J. F., Rad, M. R., Manning, D. T., & Goemans, C. (2021). Changing climate, changing minds? The effects of natural disasters on public perceptions of climate change. Climatic Change, 168, 1–26.

    Article  Google Scholar 

  • Solomon, S. (Ed.). (2007). Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge university press.

    Google Scholar 

  • Songok, C. K., Kipkorir, E. C., Mugalavai, E. M., Kwonyike, A. C., & Ng’weno, C. (2011). Improving the participation of agro-pastoralists in climate change adaptation and disaster risk reduction policy formulation: a case study from Keiyo district, Kenya. Experiences of climate change adaptation in Africa, 55–68.

    Google Scholar 

  • Spinoni, J., Barbosa, P., Bucchignani, E., Cassano, J., Cavazos, T., Cescatti, A., ... & Dosio, A. (2021). Global exposure of population and land‐use to meteorological droughts under different warming levels and SSPs: a CORDEX‐based study. International Journal of Climatology, 41(15), 6825–6853.

    Google Scholar 

  • Springmann, M., Mason-D'Croz, D., Robinson, S., Garnett, T., Godfray, H. C. J., Gollin, D., ... & Scarborough, P. (2016). Global and regional health effects of future food production under climate change: a modelling study. The Lancet, 387(10031), 1937–1946.

    Google Scholar 

  • Susskind, L., & Kim, A. (2022). Building local capacity to adapt to climate change. Climate Policy, 22(5), 593–606.

    Article  Google Scholar 

  • Syed, A., Raza, T., Bhatti, T. T., & Eash, N. S. (2022). Climate Impacts on the agricultural sector of Pakistan: Risks and solutions. Environmental Challenges, 6, 100433.

    Article  Google Scholar 

  • Taylor, M. (2018). Climate-smart agriculture: what is it good for?. The Journal of Peasant Studies, 45(1), 89–107.

    Google Scholar 

  • Thornton, P. K., van de Steeg, J., Notenbaert, A., & Herrero, M. (2009). The impacts of climate change on livestock and livestock systems in developing countries: A review of what we know and what we need to know. Agricultural Systems, 101(3), 113–127.

    Article  Google Scholar 

  • Tirado, M. C., Clarke, R., Jaykus, L. A., McQuatters-Gollop, A., & Frank, J. M. (2010). Climate change and food safety: A review. Food Research International, 43(7), 1745–1765.

    Article  Google Scholar 

  • Tol, R. S. J. (2009). The economic effects of climate change. Journal of economic perspectives, 23(2), 29–51.

    Article  Google Scholar 

  • Tribouillois, H., Constantin, J., & Justes, E. (2018). Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers. Global Change Biology, 24(6), 2513–2529.

    Article  Google Scholar 

  • Udomkun, P., Wiredu, A. N., Nagle, M., Müller, J., Vanlauwe, B., & Bandyopadhyay, R. (2017). Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application–A review. Food Control, 76, 127–138.

    Article  CAS  Google Scholar 

  • Ullah, H., Fordham, D. A., & Nagelkerken, I. (2021). Climate change negates positive CO2 effects on marine species biomass and productivity by altering the strength and direction of trophic interactions. Science of The Total Environment, 801, 149624.

    Article  CAS  Google Scholar 

  • Van Lenteren, J. C., Alomar, O., Ravensberg, W. J., & Urbaneja, A. (2020). Biological control agents for control of pests in greenhouses. Integrated pest and disease management in greenhouse crops, 409–439.

    Google Scholar 

  • Wang, Y., Bi, H., Huang, H., Liu, Y., Liu, Y., Liang, X., ... & Zhang, Z. (2019). Satellite-observed trends in the Arctic sea ice concentration for the period 1979–2016. Journal of Oceanology and Limnology, 37(1), 18–37.

    Google Scholar 

  • Watson, J. E., Iwamura, T., & Butt, N. (2013). Mapping vulnerability and conservation adaptation strategies under climate change. Nature Climate Change, 3(11), 989–994.

    Article  Google Scholar 

  • Werksman, J. (1994). The United Nations framework convention on climate change: The first conference of the parties opening in Berlin. Global Environmental Change, 4(4), 339–340.

    Article  Google Scholar 

  • Wheeler, S. A., Nauges, C., & Zuo, A. (2021). How stable are Australian farmers’ climate change risk perceptions? New evidence of the feedback loop between risk perceptions and behaviour. Global Environmental Change, 68, 102274.

    Article  Google Scholar 

  • World Bank. (2009). Making development climate resilient: A World Bank strategy for sub-Saharan Africa.

    Google Scholar 

  • World Health Organization. (2019). The state of food security and nutrition in the world 2019: safeguarding against economic slowdowns and downturns (Vol. 2019). Food & Agriculture Org.

    Google Scholar 

  • REGION, A. (2009). Making Development Climate Resilient: A World Bank Strategy for Sub-Saharan Africa.

    Google Scholar 

  • Wu, X., Lu, Y., Zhou, S., Chen, L., & Xu, B. (2016). Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. Environment International, 86, 14–23.

    Article  Google Scholar 

  • Yanik, T., & Aslan, I. (2018). Impact of global warming on aquatic animals. Pakistan Journal of Zoology, 50(1).

    Google Scholar 

  • Ye, L., Shi, K., Xin, Z., Wang, C., & Zhang, C. (2019). Compound droughts and heat waves in China. Sustainability, 11(12), 3270.

    Article  Google Scholar 

  • Zacarias, D. A. (2020). Global bioclimatic suitability for the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), and potential co-occurrence with major host crops under climate change scenarios. Climatic Change, 161(4), 555–566.

    Article  CAS  Google Scholar 

  • Zhang, H., Zhu, J., Gong, Z., & Zhu, J. K. (2022). Abiotic stress responses in plants. Nature Reviews Genetics, 23(2), 104–119.

    Article  Google Scholar 

  • Zheng, F., Ren, H., Lin, R., & Zhu, J. (2023). Realistic ocean initial condition for stimulating the successful prediction of extreme cold events in the 2020/2021 winter. Climate Dynamics, 61(1), 33–46.

    Article  Google Scholar 

  • Zhou, T. (2021). New physical science behind climate change: What does IPCC AR6 tell us?. The Innovation, 2(4).

    Google Scholar 

  • Zurek, M., Hebinck, A., & Selomane, O. (2022). Climate change and the urgency to transform food systems. Science, 376(6600), 1416–1421.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jackson Ishara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ishara, J., Ogunyiola, A., Matendo, R., Kiyala, J.C.K., Karume, K. (2024). Climate Change and Its Implications on Food Security in the Great Lakes Region. In: Kiyala, J.C.K., Chivasa, N. (eds) Climate Change and Socio-political Violence in Sub-Saharan Africa in the Anthropocene. The Anthropocene: Politik—Economics—Society—Science, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-031-48375-2_5

Download citation

Publish with us

Policies and ethics