Skip to main content

Laminarine

  • Chapter
  • First Online:
Aquatische Biopolymere
  • 175 Accesses

Zusammenfassung

Laminarine sind kurzkettige Polysaccharide, die in der Zellwand von Braunalgen vorkommen. Die einfache Struktur der kurzkettigen 1,3-verknüpften β-Glucose-Einheiten macht sie attraktiv für die Bioethanolproduktion. Laminarin hat auch einige bioaktive Eigenschaften, die von Forschungsinteresse und potenzieller kommerzieller Anwendung sind. Die Extraktion von Laminarin aus Braunalgen kann parallel zur Extraktion der anderen Polysaccharide in der Zellwand der Braunalgen durchgeführt werden, so dass sie zu einer effizienteren Nutzung der Algenbiomasse beiträgt. Dieses Kapitel überprüft den Produktionsprozess und bewertet die Umweltauswirkungen der Laminarinproduktion, das kommerzielle Potenzial in Bezug auf die Verfügbarkeit von Rohstoffen sowie bestehende und potenzielle Anwendungen. Das Vorkommen von Laminarin in der Natur und seine Chemie werden ebenfalls in diesem Kapitel vorgestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Abraham RE, Su P, Puri M, Raston CL, Zhang W (2019) Optimization of biorefinery of alginate, fucoidan and laminarin from brown seaweed Durvillaea potatorum. Algal Res 38. Article 101389

    Google Scholar 

  • Beattie A, Hirst EL, Percival E (1961) Studies on the metabolism of the Chrysophyceae. Comparative structural investigations on leucosin (chrysolaminarin) separated from diatoms and laminarin from brown algae. Biochem J 79:531–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouwhuis MA, Sweeney T, Mukhopadhyay A, McDonnell MJ, O’Doherty JV (2017) Maternal laminarin supplementation decreases Salmonella typhimurium shedding and intestinal health in piglets following an experimental challenge with S. typhimurium post-weaning. Anim Feed Sci Technol 223:156–168

    Article  CAS  Google Scholar 

  • Caballero MA, Jallet D, Shi L, Rithner C, Zhang Y, Peers G (2016) Quantification of chrysolaminarin from the model diatom Phaeodactylum tricornutum. Algal Res 20:180–188

    Article  Google Scholar 

  • Caipang CMA, Lazado CC (2015) Nutritional impacts on fish mucosa: immunostimulants, pre- and probiotics. In: Beck BH, Peatman E (Hrsg) Mucosal health and aquaculture, S 211–272

    Google Scholar 

  • Chen Y, Chen J, Kuo Y, Lin Y, Huang C (2016) Lipopolysaccharide and β-1,3-glucan-binding protein (LGBP) bind to seaweed polysaccharides and activate the prophenoloxidase system in white shrimp Litopenaeus vannamei. Dev Comp Immunol 55:144–151

    Article  CAS  PubMed  Google Scholar 

  • Chetia L, Kalita D, Ahmed GA (2017) Synthesis of Ag nanoparticles using diatom cells for ammonia sensing. Sens Bio-Sensing Res 16:55–61

    Article  Google Scholar 

  • Deville C, Damas J, Forget P, Dandrifosse G, Peulen O (2004) Laminarin in the dietary fibre concept. J Sci Food Agric 84:1030–1038

    Article  CAS  Google Scholar 

  • Deville C, Gharbi M, Dandrifosse G, Peulen O (2007) Study on the effects of laminarin, a polysaccharide from seaweed, on gut characteristics. J Sci Food Agric 87:1717–1725

    Article  CAS  Google Scholar 

  • FAO (2018) The state of world fisheries and aquaculture 2018: meeting the sustainable development goals. Rome. Licence: CC BY-NC-SA 3.0 IGO. ISBN 978-92-5-130562-1

    Google Scholar 

  • Hildebrand M, Manandhar-Shrestha MK, Abbriano R (2017) Effects of chrysolaminarin synthase knockdown in the diatom Thalassiosira pseudonana: implications of reduced carbohydrate storage relative to green algae. Algal Res 23:66–77

    Article  Google Scholar 

  • Horn SJ, Aasen IM, Ostgaard K (2000) Ethanol production from seaweed extract. J Ind Microbiol Biotechnol 25(5):249–254

    Article  CAS  Google Scholar 

  • Hrmova M, Fincher GB (2009) Plant and microbial enzymes involved in the depolymerization of (1,3)-β-D-glucans and related polysaccharides. In: Bacic A, Fincher GB, Stone BA (Hrsg) Chemistry, biochemistry and biology of 1-3 beta glucans and related polysaccharides. Academic Press, S 119–170

    Google Scholar 

  • Irfan M, Kwon TH, Yun BS, Park NH, Rhee MH (2018) Eisenia bicyclis (brown alga) modulates platelet function and inhibits thrombus formation via impaired P2Y12 receptor signaling pathway. Phytomedicine 1(4):79–87

    Article  Google Scholar 

  • Ji CF, Ji YB (2014) Laminarin-induced apoptosis in human colon cancer LoVo cells. Oncol Lett 7(5):1728–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang H, Liang S, Yao XR, Jin YX, Kim NH (2018) Laminarin improves developmental competence of porcine early stage embryos by inhibiting oxidative stress. Theriogenology 115:38–44

    Article  CAS  PubMed  Google Scholar 

  • Kadam SU, Alvarez C, Tiwari BK, O’Donnell CP (2015) Extraction of biomolecules from seaweeds. In: Tiwari BK, Troy DJ (Hrsg) Seaweed sustainability. Academic Press, S 243–269

    Google Scholar 

  • Kim SK, Bhatnagar I (2011) Physical, chemical and biological properties of wonder kelp—laminaria. In: Kim SK (Hrsg) Marine medicinal foods. Advances in food and nutrition research, Bd 64, S 85–96

    Google Scholar 

  • Kim EJ, Fathoni A, Jeong G, Jeong HD, Kim JK (2013) Microbacterium oxydans, a novel alginate- and laminarin-degrading bacterium for the reutilization of brown-seaweed waste. J Environ Manage 130:153–159

    Article  CAS  PubMed  Google Scholar 

  • Konda M, Singh S, Simmons BA, Klein-Marcuschamer D (2015) An investigation on the economic feasibility of macroalgae as a potential feedstock for biorefineries. Bioenergy Res 8:1046–1056

    Article  Google Scholar 

  • Liu Z, Xiong Y, Yi L, Dai R, Yuan S (2018) Endo-β-1,3-glucanase digestion combined with the HPAEC-PAD-MS/MS analysis reveals the structural differences between two laminarins with different bioactivities. Carbohyd Polym 194:339–349

    Article  CAS  Google Scholar 

  • Martins CR, Custodio CA, Mano JF (2018) Multifunctional laminarin microparticles for cell adhesion and expansion. Carbohyd Polym 202:91–98

    Article  CAS  Google Scholar 

  • Michel C, Bernard C, Lahaye M, Formaglio D, Kaefer B, Quemener B (1999) Algal oligosaccharides as functional foods: in vitro study of their cellular and fermentative effects. Sci Ailm 19:311–332

    CAS  Google Scholar 

  • Misurcova L, Skrivankova S, Samek D, Ambrozova J, Machu L (2012) Health benefits of algal polysaccharides in human nutrition. Adv Food Nutr Res 66:75–145

    Article  CAS  PubMed  Google Scholar 

  • Moroney NC, O’Grady MN, Robertson RC, Stanton C, Kerry JP (2015) Influence of level and duration of feeding polysaccharide (laminarin and fucoidan) extracts from brown seaweed (Laminaria digitata) on quality indices of fresh pork. Meat Sci 99:132–141

    Article  CAS  PubMed  Google Scholar 

  • Motone K, Takagi T, Sasaki Y, Kuroda K, Ueda M (2016) Direct ethanol fermentation of the algal storage polysaccharide laminarin with an optimized combination of engineered yeasts. J Biotechnol 231:129–135

    Article  CAS  PubMed  Google Scholar 

  • Ojima T, Rahman MM, Kumagai Y, Nishiyama R, Narciso J, Inoue A (2018) Polysaccharide-degrading enzymes from marine gastropods. Methods Enzymol 605:457–497

    Google Scholar 

  • Rioux LE, Turgeon SL (2015) Seaweed carbohydrates. In: Tiwari BK, Troy DJ (Hrsg) Seaweed sustainability. Academic Press, S 141–192

    Google Scholar 

  • Stone BA (2009) Chemistry of β-glucans. In: Bacic A, Fincher GB, Stone BA (Hrsg) Chemistry, biochemistry and biology of 1-3 beta glucans and related polysaccharides. Academic Press, S 5–46

    Google Scholar 

  • Sweeney T, Meredith H, Vigors S, Mcdonnell MJ, Ryan M, Thornton K, O’Doherty JV (2017) Extracts of laminarin and laminarin/fucoidan from the marine macroalgae species Laminaria digitata improved growth rate and intestinal structure in young chicks, but does not influence Campylobacter jejuni colonisation. Anim Feed Sci Technol 232:71–79

    Article  CAS  Google Scholar 

  • Thorpe HM, Adams SS (1957) The anticoagulant activity and toxicity of laminarin sulphate K. J Pharm Pharmacol 9(1):459–463

    PubMed  Google Scholar 

  • Wang H, Xu Z, Wu Y, Li H, Liu W (2018) A high strength semi-degradable polysaccharide-based hybrid hydrogel for promoting cell adhesion and proliferation. J Mater Sci 53:6302–6312

    Article  CAS  Google Scholar 

  • Yin G, Li W, Lin Q, Lin X, Lin J, Zhu Q, Jiang H, Huang Z (2014) Dietary administration of laminarin improves the growth performance and immune responses in Epinephelus coioides. Fish Shellfish Immunol 41(2):402–406

    Article  CAS  PubMed  Google Scholar 

  • Yvin JC, Levasseur F, Amin-Gendy DCP, Tran TK, Patier P, Rochas C, Lienart Y, Cloarec B (1993) Laminarin as a seed germination and plant growth accelerator. EP0649279A1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ololade Olatunji .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Olatunji, O. (2024). Laminarine. In: Aquatische Biopolymere. Springer Spektrum, Cham. https://doi.org/10.1007/978-3-031-48282-3_9

Download citation

Publish with us

Policies and ethics