Skip to main content

Polyester

  • Chapter
  • First Online:
Aquatische Biopolymere
  • 180 Accesses

Zusammenfassung

Polyester zeichnen sich durch eine Struktureinheit aus, die aus Ester-verknüpften Monomeren besteht. Cutin ist das Hauptpolyester, das im aquatischen Ökosystem gefunden wird. Es ist in Wasserpflanzen vorhanden, wo es eine Rolle bei der Regulierung der Wasserpermeation spielt. Es hat potenzielle Anwendungen in Verpackungsfolien, Kosmetika und der Produktion von Biopolyester. Das Verständnis der Struktur, Funktion und Chemie ist auch nützlich bei der Entwicklung von Produkten, die Cutin nachahmen. Dieses Kapitel diskutiert Cutin, das aus der Umwelt gewonnen wird. Es behandelt die natürlichen Quellen von Cutin innerhalb des aquatischen Umfelds, seine Chemie, den Extraktionsprozess, Anwendungen, Umweltauswirkungen der Cutin-Produktion und den aktuellen Stand seiner kommerziellen Produktion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Angst G, Heinrich L, Kogel-Knabner I, Muelle CW (2016) The fate of cutin and suberin of decaying leaves, needles and roots – inferences from the initial decomposition of bound fatty acids. Org Geochem 95:81–92

    Article  CAS  Google Scholar 

  • Borisjuk N, Peterson AA, Lv J, Qu G, Luo Q, Shi L, Chen G, Kishchenko O, Zhuo Y, Shi J (2018) Structural and biochemical properties of duckweed surface cuticle. Front Chem. https://doi.org/10.3389/fchem.2018.00317

  • Cheng JJ, Stomp AM (2009) Growing duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed. CLEAN–Soil Air Water 37:17–26

    Article  CAS  Google Scholar 

  • Cifarelli A, Cigognini I, Bolzoni L, Montanari A (2016) Cutin isolated from tomato processing by-products extraction methods and characterization. In: Proceedings of CYPRUS 2016 4th international conference on sustainable solid waste management, S 1–20

    Google Scholar 

  • Cigognini IM, Montanari A, De la Torre Carreras R, Montserrat CB (2015) Extraction method of a polyester polymer or cutin from the wasted tomato peels and polyester polymer so extracted. WO2015/028299 A1

    Google Scholar 

  • De Vries H, Bredemeijer G, Heinen W (1967) The decay of cutin and cuticular components by soil microorganisms in their natural environment. Acta Bot Neerl 16:102–110

    Article  Google Scholar 

  • FAO (2018) The state of world fisheries and aquaculture 2018 – meeting the sustainable development goals. Rome. Licence: CC BY-NC-SA 3.0 IGO

    Google Scholar 

  • FAO, IFAD, UNICEF, WFP and WHO (2018) The state of food security and nutrition in the World 2018. Building climate resilience for food security and nutrition. Rome, FAO. Licence: CC BY-NC-SA 3.0 IGO

    Google Scholar 

  • Gómez-Patiño MB, Cassani J, Jaramillo-Flores ME, Zepeda-Vallejo LG, Sandoval G, Jimenez-Estrada M, Arrieta-Baez D (2013) Oligomerization of 10,16-dihydroxyhexadecanoic acid and methyl 10,16-dihydroxyhexadecanoate catalyzed by lipases. Molecules 18:9317–9333

    Article  PubMed  PubMed Central  Google Scholar 

  • Gómez-Patiño MB, Gutiérrez-Salgado DY, García-Hernández E, Mendez-Mendez JV, Andraca Adame JA, Campos-Terán J, Arrieta-Baez D (2015) Polymerization of 10,16-dihydroxyhexadecanoic acid, main monomer of tomato cuticle, using the lewis acidic ionic liquid choline chloride·2ZnCl2. Front Mater 2:1–9

    Article  Google Scholar 

  • Graca J (2015) Suberin: the biopolyester at the frontier of plants. Front Chem 3(62):1–11. https://doi.org/10.3389/fchem.2015.00062

    Article  Google Scholar 

  • Graca J, Lamosa P (2010) Linear and branched poly(ω-hydroxyacid) esters in plant cutins. J Agric Food Chem 58:9666–9674

    Google Scholar 

  • Heredia A (2003) Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer. Biochim Biophys Acta (BBA) Gen Subj 1620:1–7

    Article  CAS  PubMed  Google Scholar 

  • Heredia-Guerrero AJ, Heredia A, Dominguez E, Cingolani R, Bayer IS, Athanassiou A, Benitez JJ (2017a) Cutin from agro-waste as a raw material for the production of bioplastics. J Exp Bot 68(19):5401–5410

    Article  CAS  PubMed  Google Scholar 

  • Heredia-Guerrero JA, Benítez JJ, Cataldi P, Paul UC, Contardi M, Cingolani R, Bayer IS, Heredia A, Athanassiou A (2017b) All-natural sustainable packaging materials inspired by plant cuticles. Adv Sustain Syst 1:1600024

    Article  Google Scholar 

  • Hood ZD, Adhikari SP, Evans SF, Wang H, Li Y, Naskar AK, Chi M, Lachgar A, Paranthaman MP (2018) Tyre-derived carbon for catalytic preparation of biofuels from feedstocks containing free fatty acids. Carbon Resour Convers 1:165–173

    Article  CAS  Google Scholar 

  • Javidialesaadi A, Raeissi S (2013) Biodiesel production from high free fatty acid-content oils: experimental investigation of the pretreatment step. Procedia APCBEE 5:474–478

    Article  CAS  Google Scholar 

  • Kolattukudy PE (2001a) Suberin from plants. In: Steinbtichel A, Doi Y (eds) Biopolymers. Wiley-VCH Verlag GmbH, Weinheim, S 41–73

    Google Scholar 

  • Kolattukudy PE (2001b) Polyesters in higher plants. In: Babel W, Steinbüchel A (eds) Biopolyesters. Springer Berlin Heidelberg, Berlin, Heidelberg, S 1–49

    Google Scholar 

  • Lam E, Appenroth KJ, Michael T, Mori K, Fakhoorian T (2014) Duckweed in bloom: the 2nd international conference on duckweed research and applications heralds the return of a plant model for plant biology. Plant Mol Biol 84:737–742. https://doi.org/10.1007/s11103-013-0162-9

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Beisson F, Koo AJ, Molina I, Pollard M, Ohlrogge J (2017) Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers. Proc Natl Acad Sci 104:18339–18344

    Article  Google Scholar 

  • López-Casado G, Matas AJ, Domínguez E, Cuartero J, Heredia A (2007) Biomechanics of isolated tomato (Solanum lycopersicum L.) fruit cuticles: the role of the cutin matrix and polysaccharides. J Exp Bot 58:3875–3883

    Article  PubMed  Google Scholar 

  • Manrich A, Moreira FKV, Otoni CG, Lorevice MV, Martins MA, Mattoso LHC (2017) Hydrophobic edible films made up of cutin and pectin. Carbohyd Polym 164:83–91

    Article  CAS  Google Scholar 

  • Montanari A, Bolzoni L, Cigognini IM, de la Torre Carreras R (2014) Tomato bio-based lacquer for sustainable metal packaging. Agro Food Ind Hi Tech 25:50–54

    CAS  Google Scholar 

  • Poku K (2002) Small scale palm oil processing in Africa. In: FAO agricultural service bulletin, vol 148. Rome. ISSN 1010-1365

    Google Scholar 

  • Santos C, Weaver DF (2018) Topically applied linoleic/linolenic acid for chronic migraine. J Clin Neurosci 58:200–201

    Article  CAS  PubMed  Google Scholar 

  • Yeats TH, Buda GJ, Wang Z, Chehanovsky N, Moyle LC, Jetter R, Schaffer AA, Rose JKC (2012) The fruit cuticles of wild tomato species exhibit architectural and chemical diversity, providing a new model for studying the evolution of cuticle function. Plant J 69:655–666

    Article  CAS  PubMed  Google Scholar 

  • Yongjin JZ, Bujis NA, Siewers V, Nielson J (2014) Fatty acid-derived biofuels and chemicals production in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2:32

    Google Scholar 

  • Zhang B, Uyama H (2016) Biomimic plant cuticle from hyperbranched poly(ricinoleic acid) and cellulose film. ACS Sustain Chem Eng 4:363–369

    Article  CAS  Google Scholar 

  • Zhou Y, Chen G, Peterson A, Zha X, Cheng J, Li S et al (2018) Biodiversity of duckweeds in Eastern China and their potential for bioremediation of industrial and municipal wastewater. J Geosci Environ Prot 6:108–116. https://doi.org/10.4236/gep.2018.63010

    Article  Google Scholar 

  • Ziegler P, Sree KS, Appenroth K-J (2016) Duckweeds for water remediation and toxicity testing. Toxicol Environ Chem 98:1127–1154. https://doi.org/10.1080/02772248.2015.1094701

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ololade Olatunji .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Olatunji, O. (2024). Polyester. In: Aquatische Biopolymere. Springer Spektrum, Cham. https://doi.org/10.1007/978-3-031-48282-3_15

Download citation

Publish with us

Policies and ethics