Skip to main content

Stärke

  • Chapter
  • First Online:
Aquatische Biopolymere
  • 198 Accesses

Zusammenfassung

Stärke spielt eine bedeutende Rolle in der Wirtschaft, da sie als Quelle für zwei Produkte dient; Nahrung und Bioethanol, beides sind wesentliche Güter. Sie wird auch in mehreren anderen Industrien verwendet und in diesem Kapitel diskutiert. In der aquatischen Umgebung kann Stärke aus Wasserpflanzen und Algen gewonnen werden. Stärkeproduzierende aquatische Organismen sollen eine bedeutende Rolle bei der Produktion von Biokraftstoff der dritten Generation spielen, der ohnehin begrenztes Ackerland für den Anbau nicht benötigt. Die einzigartige Chemie einiger aquatischer Stärkeformen macht sie attraktiv für spezifische industrielle Anwendungen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Andrade LR, Farina M, Amado GM (2004) Effects of copper on Enteromorpha flexuosa (Chlorophyta) in vitro. Ecotoxicol Environ Saf 58:117–125

    Article  CAS  PubMed  Google Scholar 

  • Appenroth KJ, Borisjuk N, Lam E (2013) Telling duckweed apart: genotyping technologies for the Lemnaceae. Chin J Appl Environ Biol 19:1–10

    Article  CAS  Google Scholar 

  • Beloshapka A, Buff P, Fahey G, Swanson K (2016) Compositional analysis of whole grains, processed grains, grain co-products, and other carbohydrate sources with applicability to pet animal nutrition. Foods 5:23–32

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhat FM, Riar CS (2016) Effect of amylose, particle size & morphology on the functionality of starches of traditional rice cultivars. Int J Biol Macromol 92:637–664

    Article  CAS  PubMed  Google Scholar 

  • Chia SR, Ong HC, Chew KW, Show PL, Phang SM, Ling TC, Nagarajan D, Lee DJ, Chang JS (2018) Sustainable approaches for algae utilisation in bioenergy production. Renew Energy 129(Part B):838–852

    Article  CAS  Google Scholar 

  • Dauvillee D, Deschamps P, Ral J, Plancke C, Puteaux J, Devassine J, Durand-Terrasson A, Devin A, Ball SG (2009) Genetic dissection of floridean starch synthesis in the cytosol of the model dinoflagellate Crypthecodinium cohnii. PNAS 106(50):21126–21130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edison S, Srinivas T (2016) Status of cassava in India an overall view. Crops 46:7–172

    Google Scholar 

  • Eichelmann E, Wagner-Riddle C, Warland J, Deen B, Voroney P (2016) Comparison of carbon budget, evapotranspiration and albedo effect between the biofuel crops switchgrass and corn. Agr Ecosyst Environ 231:271–282

    Article  Google Scholar 

  • Fournet I, Zinoun M, Deslandes E, Diouris M, Yves Floch J (2000) Floridean starch and carrageenan contents as responses of the red alga Solieria chordalis to culture conditions. Eur J Phycol 34:125–130

    Article  Google Scholar 

  • Fujita M, Mori K, Kodera T (1999) Nutrient removal and starch production through cultivation of Wolffia arrhiza. J Biosci Bioeng 87(2):194–198

    Article  CAS  PubMed  Google Scholar 

  • Gifuni I, Oliveri G, Krauss IR, D’Errico G, Pollio A, Marzocchella A (2017) Microalgae as new sources of starch: isolation and characterization of microalgal starch granules. Chem Eng Trans 57:1423–1428

    Google Scholar 

  • Himaa HB, Dammak M, Karkouch N, Hentati F, Laroche C, Michaud P, Fendri I, Abdelkafi S (2019) Optimal cultivation towards enhanced biomass and floridean starch production by Porphyridium marinum. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.01.207 (in press)

    Article  CAS  PubMed  Google Scholar 

  • Ingle KNKN, Polikovsky M, Chemodanov A, Goldberg A (2018) Marine integrated pest management (MIPM) approach for sustainable agriculture. Algal Res 29:223–232

    Article  Google Scholar 

  • Korzen L, Abelson A, Israel A (2016) Growth, protein and carbohydrate contents in Ulva rigida and Gracilaria bursa-pastoris integrated with an offshore fish farm. J Appl Phycol 28:1835–1845

    Article  CAS  Google Scholar 

  • Lebreton L, Slat B, Ferrari F, Sainte-Rose B, Aitken J, Marthouse R, Hajbane S, Cunsolo S, Schwarz A, Levivier A, Noble K, Debeljak P, Maral H, Schoeneich-Argent R, Brambini R, Reisser J (2018) Evidence that the great pacific garbage patch is rapidly accumulating plastic. Nat Sci Rep 8:4666

    CAS  Google Scholar 

  • Le Corre BAD, Bras J (2010) Starch nanoparticles: a review. Biomacromolecules 11:1139–1153

    Article  PubMed  Google Scholar 

  • Li M, Witt T, Xie F, Warren FJ, Halley PJ, Gilbert RG (2015) Biodegradation of starch films: the roles of molecular and crystalline structure. Carbohyd Polym

    Google Scholar 

  • Li Y, Zhang F, Daroch M, Tang J (2016) Positive effects of duckweed polycultures on starch and protein accumulation. Biosci Rep 36(00380):1–8

    Google Scholar 

  • Liu W, Halley PJ, Gilbert RG (2010) Mechanism of degradation of starch, a highly branched polymer, during extrusion. Macromolecules 43(6):2855–2864

    Article  CAS  Google Scholar 

  • Liu G, Gu Z, Hong Y, Cheng L, Li C (2017) Electrospun starch nanofibers: recent advances, challenges and strategies for potential pharmaceutical application. J Controlled Release 252:95–107

    Article  CAS  Google Scholar 

  • Liu Y, Wang X, Fang Y, Huang M, Chen X, Zhang Y, Zhao H (2018) The effects of photoperiod and nutrition on duckweed (Landoltia punctata) growth and starch accumulation. Ind Crops Prod 115:243–249

    Article  CAS  Google Scholar 

  • Lopez-Llorca LV, Valiente MFC (1993) Study of biodegradation of starch plastic films in soil using scanning electron microscopy. Micron 457–463

    Article  CAS  Google Scholar 

  • Maurer HW (2009) Starch in the paper industry. In: Starch, 3. Aufl. Food science and technology, S 657–713

    Google Scholar 

  • McCracken DA, Cain JR (1980) Amylose in floridean starch. New Phytol 88:67–71

    Article  Google Scholar 

  • McWilliams A (2017) Biodegradable polymers. BCC Research, Wellesley, MA, USA

    Google Scholar 

  • Miranda AF, Biswas B, Ramkumar N, Singh R, Kumar J, James A, Lal B, Subudhi S, Bhaskar T, Mouradov A (2016) Aquatic plant Azolla as the universal feedstock for biofuel production. Biotechnol Biofuels 9(221):1–17

    Google Scholar 

  • Muradov N, Taha M, Miranda AF, Kadali K, Gujar A, Rochfort S, Stevenson T, Ball AS, Mouradov A (2014) Dual application of duckweed and Azolla plants for wastewater treatment and renewable fuels and petrochemicals production. Biotechnol Biofuels 7(30):1–17

    Google Scholar 

  • Muthuvelan B, Noro T, Nakamura K (2002) Effect of light quality on the cell integrity in marine alga Ulva pertusa (Chlorophyceae). Indian J Mar Sci 31:21–25

    Google Scholar 

  • Negm NA, Zahran MK, Elshafy MRA, Aiad AI (2018) Transformation of Jatropha oil to biofuel using transition metal salts as heterogeneous catalysts. J Mol Liq 256:16–21

    Article  CAS  Google Scholar 

  • Penfound WT, Earle TT (1948) The biology of the water hyacinth. Ecol Monogr 18(4):447–472

    Article  Google Scholar 

  • Prabhu M, Chemodanov A, Gottlieb R, Kazir M, Goldberg A (2019) Starch from the sea: the green macroalga Ulva ohnoi as a potential source for sustainable starch production in the marine biorefinery. Algal Res 37:215–227

    Article  Google Scholar 

  • Rahman M, Roy TS, Chowdhury IF (2016) Biochemical composition of different potato varieties for processing industry in Bangladesh. Agric Sci Pract 2:81–89

    Google Scholar 

  • Reddy DK, Bhotmange MG (2014) Viscosity of starch: a comparative study of Indian rice (Oryza sativa L.) varieties. Int Rev Appl Eng Res 4:397–402

    Google Scholar 

  • Rehman ZU, Anal AK (2018) Enhanced lipid and starch productivity of microalga (Chlorococcum sp. TISTR 8583) with nitrogen limitation following effective pretreatments for biofuel production. Biotechnol Rep 20. https://doi.org/10.1016/j.btre.2018.e00298

    Article  PubMed  Google Scholar 

  • Robyt J (2008) Starch: structure, properties, chemistry and enzymology. In: Fraser-Reid BO, Tatsuta K, Thiem J (eds) Glycoscience. Springer, Berlin, Heidelberg

    Google Scholar 

  • Sarka E, Dvoracek V (2017) Waxy starch as a perspective raw material (a review). Food Hydrocolloids 69:402–409

    Article  CAS  Google Scholar 

  • Schellart JA, Visser FMW, Zandstra T, Middelhoven WJ (1976) Starch degradation by the mould Trichoderma viride I. The mechanism of starch degradation. Antonie van Leeuwenhoek 42:229

    Article  CAS  PubMed  Google Scholar 

  • Sjöö LM, Nilson L (2018) Starch in food: structure, function and applications, 2. Aufl. Elsevier, S 58

    Google Scholar 

  • Smith JL, Summers G, Wong R (2010) Nutrient and heavy metal content of edible seaweeds in New Zealand. N Z J Crop Hortic Sci 38:19–28

    Article  CAS  Google Scholar 

  • Sullivan-Trainor M (2013) Starches/glucose, global markets. BCC Research, Wellesley, MA, USA

    Google Scholar 

  • Teli MD, Rohera P, Sheikh J, Singhal R (2009) Application of germinated maize starch in textile printing. Carbohyd Polym 75(4):599–603

    Article  CAS  Google Scholar 

  • Urbanek AK, Rymowicz W, Mironczuk AM (2018) Degradation of plastic-degrading bacteria in cold marine habitats. Appl Microbiol Biotechnol 102:7669–7678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Pan S, Jiang Z, Liu S, Feng Y, Gu Z, Li C, Li Z (2019) A novel maltooligosaccharide forming amylase from Bacillus stearothermophilus. Food Biosci 30:100415

    Article  CAS  Google Scholar 

  • Xu J, Zhao H, Stomp AM, Cheng JJ (2012) The production of duckweed as a source of biofuels. Biofuels 3:589–601

    Article  CAS  Google Scholar 

  • Xu J, Stomp A, Cheng J (2014) The production of duckweed as a source of biofuels. Biofuels 3(5):589–601

    Article  Google Scholar 

  • Xu Y, Fang Y, Li Q, Yang G, Guo L, Chen G, Tan L, He K, Jin Y, Zhao H (2018) Turion, an innovative duckweed-based starch production system for economical biofuel manufacture. Ind Crops Prod 124:108–114

    Article  CAS  Google Scholar 

  • Yao C, Ai J, Cao X, Xue S, Zhang W (2012) Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation. Bioresour Technol 118:438–444

    Article  CAS  PubMed  Google Scholar 

  • Yew GY, Lee SY, Show PL, Tao Y, Law LC, Nguyen TTC, Chang J (2019) Recent advances in algae biodiesel production: from upstream cultivation to downstream processing. Bioresour Technol Rep 7:10027

    Google Scholar 

  • Yu S, Blennow A, Bojko M, Madsen F, Olsen CE, Engelsen SB (2002) Physico-chemical characterization of floridean starch of red algae. Starch/Staerke 54:66–74

    Article  CAS  Google Scholar 

  • Zhang W, Zhao Y, Cui B, Wang H, Liu T (2016) Evaluation of filamentous green algae as feedstocks for biofuel production. Bioresour Technol 220:407–413

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Pei H, Chen S, Jiang L, Hou Q, Yang Z, Yu Z (2018) Salinity-induced cellular cross-talk in carbon partitioning reveals starch-to-lipid biosynthesis switching in low-starch freshwater algae. Bioresour Technol 250:449–456

    Article  CAS  PubMed  Google Scholar 

  • Ziegler P, Adelmann K, Zimmer S, Appenroth KJ (2015) Relative in vitro growth rates of duckweeds (Lemnaceae) – the most rapidly growing higher plants. Plant Biol 17:33–41

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ololade Olatunji .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Olatunji, O. (2024). Stärke. In: Aquatische Biopolymere. Springer Spektrum, Cham. https://doi.org/10.1007/978-3-031-48282-3_13

Download citation

Publish with us

Policies and ethics