Skip to main content

Enzyme

  • Chapter
  • First Online:
Aquatische Biopolymere
  • 140 Accesses

Zusammenfassung

Enzyme spielen wichtige Rollen bei der Katalyse biologischer Prozesse, wie dem Abbau komplexer Verbindungen in Lebensmitteln zu einfacheren Formen, die zur Energieerzeugung und Stoffwechselunterstützung genutzt werden können. Diese Enzyme werden auch kommerziell in Produkten, etwa in biologischen Reinigungsmitteln, Bio-Kraftstoff, Lebensmitteln und Medikamenten verwendet. Aquatische Quellen von Enzymen umfassen innere Organe von Fischen, karnivore Pflanzen sowie Mikroorganismen. Organismen, die extreme aquatische Umgebungen bewohnen, sind ebenfalls Quellen von Enzymen, die in industriellen Prozessen besser funktionieren als andere Enzyme. Einige aquatische Enzyme bieten auch die Möglichkeit umweltfreundlicherer Prozesse zur Bio-Kraftstoffproduktion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Adamec L (2010) Mineral cost of carnivory in aquatic carnivorous plants. Flora 205:618–621

    Article  Google Scholar 

  • Aguilera-Morales ME, Canales-Martinez MM, Avila-Gronzalez R, Flores-Ortiz CM (2018) Nutrients and bioactive compounds of the Lemna gibba and Ulva lactuca as possible ingredients to functional foods. Lat Am J Aquat Res 46(4):709–716

    Article  Google Scholar 

  • Amano K (1962) The influence of fermentation on the nutritive value of fish with special reference to fermented fish products of South-East Asia. In: Heen E, Kreuzer R (Hrsg) Fish in nutrition. Fishing News Books, London, S 180–197

    Google Scholar 

  • Arabi H, Yazdi Tabatabaei M, Faramarzi MA (2010) Influence of whole microalgal cell immobilization and organic solvent on the bioconversion of androst-4-en-3,17-dione to testosterone by Nostoc muscorum. J Mol Catal B Enzym 62(3–4):213–217

    Article  CAS  Google Scholar 

  • Bele SD, Sharmila S, Rebecca JL (2014a) Isolation and characterization of lipase from marine algae. Int J Pharm Sci Rev Res 27(1):191–195

    CAS  Google Scholar 

  • Bele SD, Sharmila SS, Rebecca JL (2014b) Comparative study of different methods of extraction of lipase from seaweeds. Res J Pharm Biol Chem Sci 5(3):1741–1748

    CAS  Google Scholar 

  • Bell AS (2007) Major antifungal drugs. Ref Modul Chem Mol Sci Chem Eng Compr Med Chem II 7:445–468

    Google Scholar 

  • Bernal D, Donley JM, Shadwick RE, Syme DA (2005) Mammal-like muscles power swimming in a cold-water shark. Nature 437(27):1349–1352

    Article  CAS  PubMed  Google Scholar 

  • Bleakley S, Hayes M (2018) Algal proteins: extraction, application and challenges concerning production (2017): 6(33):1–34

    Google Scholar 

  • Brouwer P, Nierop KGJ, Huijgen WJJ, Schluepmann H (2019) Aquatic weeds as novel protein sources: alkaline extraction of tannin-rich Azolla. Biotechnol Rep 24:e00368. https://doi.org/10.1016/j.btre.2019.e00368

    Article  PubMed  PubMed Central  Google Scholar 

  • Daboor SM, Raudonis R, Cohen A, Rohde JR, Cheng Z (2019) Marine bacteria, a source for alginolytic enzyme to disrupt Pseudomonas aeruginosa biofilms. Mar Drugs 17(5):307–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta R (2008) Fundamentals of biochemical engineering. Springer, Berlin, Heidelberg, New York, S 50–52. ISBN 978-3-540-779fYJ-l

    Google Scholar 

  • Fernandes P (2016) Enzymes in fish and seafood processing. Front Biotechnol 4(59):1–14

    Google Scholar 

  • Fleurence J (1999) Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends Food Sci Technol 10:25–28

    Article  CAS  Google Scholar 

  • Garcia-Carreno FL, Navarrete del Toro MA, Serviere-Zaragoza E (2003) Digestive enzymes in juvenile green abalone, Haliotisfulgens, fed natural food. Comp Biochem Physiol B Biochem Mol Biol 134(1):143–150

    Article  CAS  PubMed  Google Scholar 

  • Glancy B, Balaban RS (2011) Protein composition and function of red and white skeletal muscle mitochondria. Am J Cell Physiol 300(6):C1280–C1290

    Article  CAS  Google Scholar 

  • Greene RV, Griffin HL, Cotta MA (1996) Utility of alkaline protease from marine shipworm bacterium in industrial cleansing applications. Biotechnol Lett 18:759–764

    Article  CAS  Google Scholar 

  • Haddar A, Agrebi R, Bougatef A, Amidet N, Sellami-Kamoun A, Nasri M (2009) Two detergent stable alkaline serine-proteases from Bacillus mojavensis A21: purification, characterization and potential application as a laundry detergent additive. Bioresour Technol 100:3366–3373

    Article  CAS  PubMed  Google Scholar 

  • He W, Li L, Zhao J, Xu H, Rui J, Cui D, Li H, Zhang H, Liu X (2019) Candida sp. 99-125 lipase-catalyzed synthesis of ergosterol linolenate and its characterization. Food Chem 280:286–293

    Article  CAS  PubMed  Google Scholar 

  • Hong R, Su L, Wu J (2019) Cutinases catalyze polyacrylate hydrolysis and prevent their aggregation. Polym Degrad Stab 159:23–30

    Article  CAS  Google Scholar 

  • Howe PE (1921) The use of sodium sulfate as the globulin precipitant in the determination of proteins in blood. J Biol Chem 49 93–107

    Google Scholar 

  • Jayapriya J, Sabtecha B, Tamilselvi A (2014) Extraction and characterization of proteolytic enzymes from fish visceral waste: potential applications as destainer and dehairing agent. Int J ChemTech Res 6(10):4504–4510

    Google Scholar 

  • Kim H, Seo HJ, Byun DS, Heu MS, Pyeun JH (2002) Proteolytic enzymes from fish and their utilization. Fish Sci 68:1557–1562

    Article  Google Scholar 

  • Kobayashi H, Hatada Y, Tsubouchi T, Nagahama T, Takami H (2012) The hadal amphipod Hirondellea gigas possessing a unique cellulase for digesting wooden debris buried in the deepest seafloor. PLoS One 7(8):e42727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komori Y, Nikai T (2013) Gloydius halys venom metalloproteinases. In: Handbook of proteolytic enzymes, Bd 1, 3 Aufl, S 965–967

    Google Scholar 

  • Kumar KS, Ganesan K, Rao PV S (2014) Seasonal variation in nutritional composition of Kappaphycus alvarezii (Doty) Doty- an edible seaweed. J Food Sci Technol. https://doi.org/10.1007/s13197-014-1372-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Leema RT, Sachindra NM (2018) Purification and characterization of agarase from marine bacteria Acinetobacter sp. PS12B and its use for preparing bioactive hydrolysate from agarophyte red seaweed Gracilaria verrucosa. Appl Biochem Biotechnol 186(1):66–84

    Article  CAS  PubMed  Google Scholar 

  • Lima FR, Ferreira AJ, Menezes G, Miranda VFO, Dourado MN, Araujo WL (2018) Cultivated bacterial diversity associated with the carnivorous plant Utricularia breviscapa (Lentibulariaceae) from floodplains in Brazil. Braz J Microbiol 49:714–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mena F, Azzopardi M, Pfennig S, Ruepert C, Tedengren M, Castillo LE, Gunnarsson JS (2014) Use of cholinesterase activity as a biomarker of pesticide exposure used on Costa Rican banana plantations in the native tropical fish Astyanax aeneus (Gunther, 1860). J Environ Biol 35(1):35–42

    CAS  PubMed  Google Scholar 

  • Mogharabi M, Faramarzi MA (2016) Are algae the future source of enzymes? Trends Pept Protein Sci 1(1):1–6

    CAS  Google Scholar 

  • Moreno-Garcia J, Garcia-Martinez T, Mauricio JC, Moreno J (2018) Yeast immobilization systems for alcoholic wine fermentations: actual trends and future perspectives. Front Microbiol 9(241):1–13

    Google Scholar 

  • Narwal SK, Gupta R (2013) Biodiesel production by transesterification using immobilized lipase. Biotechnol Lett 35(4):479–490

    Article  CAS  PubMed  Google Scholar 

  • Nogueira AV, Rossi GR, Iacomini M, Sassaki GL, Cipriani TR (2019) Viscera of fish as raw material for extraction of glycosaminoglycans of pharmacological interest. Int J Biol Macromol 121:239–248

    Article  CAS  PubMed  Google Scholar 

  • Paulsen SS, Andersen B, Gram L, Machado H (2016) Biological potential of chitinolytic marine bacteria. Mar Drugs 14(230):1–17

    Google Scholar 

  • Preeti C, Dimpi G, Drukshakshi J, Jasbir S (2011) Applications of microbial proteases in pharmaceutical industry: an overview. Rev Med Microbiol 2(4):96–101

    Google Scholar 

  • Rashidah AR, Nazalan N, Razip S, Koay PC (2006) Lipase producing psychrophilic microorganism isolated from Antarctica. J Bacteriol 182:125–132

    Google Scholar 

  • Schulze WX, Sanggaard KW, Kreuzer I, Knudsen AD, Bemm F, Thorgersen IB, Brautigam A, Thomsen RL, Schliesky S, Dyrlund TF, Escalante-Perez M, Becker D (2012) The protein composition of the digestive fluid from the venus flytrap sheds light on prey digestion mechanisms. Mol Cell Proteomics 11(11):1306–1319

    Article  Google Scholar 

  • Seca AML, Pinto DCGA (2018) Overview on the antihypertensive and anti-obesity effects of secondary metabolites from seaweeds. Mar Drugs 16(237):1–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Seibel BA, Walsh PJ (2002) Trimethylamine oxide accumulation in marine animals: relationship to acylglycerol storage. J Exp Biol 205:297–306

    Article  CAS  PubMed  Google Scholar 

  • Shahidi F, Kamil YVAJ (2001) Enzymes from fish and aquatic invertebrates and their application in the food industry. Trends Food Sci Technol 12(12):435–464

    Article  Google Scholar 

  • Sil’chenko AS, Kusaikin MI, Zakharenko AM, Zvyagintseva TN (2013) Isolation from the marine mollusk Lambis sp. and catalytic properties of an alginate lyase with rare substrate specificity. Chem Nat Compd 49(2):215–218

    Article  Google Scholar 

  • Silchenko AS, Kusaykin MI, Kurilenko VV, Zakharenko MA, Isakov VV, Zaporozhets TS, Gazha AK, Zvyagintseva TN (2013) Hydrolysis of fucoidan by fucoidanase isolated from the marine bacterium, Formosa algae. Mar Drugs 11:2413–2430

    Article  PubMed  PubMed Central  Google Scholar 

  • Sivasubramani K, Singh JR, Jayalakshmi S, Kumar SS, Selvi C (2013) Production and optimization of lipase from marine derived bacteria. Int J Curr Microbiol Appl Sci 2(4):126–135

    Google Scholar 

  • Teo CL, Jamaluddin H, Zain NAM, Idris A (2014) Biodiesel production via lipase catalysed transesterification of microalgae lipids from Tetraselmis sp. Renew Energy 68:1–5

    Article  CAS  Google Scholar 

  • Tokusoglu O, Unal MK (2003) Fat replacers in meat products. Pak J Nutr 2(3):196–203

    Article  Google Scholar 

  • Trivedi N, Reddy CRK, Radulovich R, Jha B (2015) Solid state fermentation (SSF)-derived cellulase for saccharification of the green seaweed Ulva for bioethanol production. Algal Res 9:48–54

    Article  Google Scholar 

  • Valsa AK, Thomas A, Mathew M, Mohan S, Manjula R (2003) Optimization of growth conditions for the production of extracellular lipase of vacillus my colds. Ind J Microbiol 43 67–69

    Google Scholar 

  • Van Krimpen M, Bikker P, van der Meer I, van der Peet-Schwering C, Vereijken J (2013) Cultivation, processing and nutritional aspects for pigs and poultry of European protein sources as alternatives for imported soybean products. Wageningen UR Livestock Research, Lelystad, The Netherlands, S 48

    Google Scholar 

  • Velasquez MT, Ramezani A, Manal A, Raj DS (2016) Trimethylamine N-oxide: the good, the bad and the unknown. Toxins (Basel) 8(11):326–337

    Article  PubMed  PubMed Central  Google Scholar 

  • Yaakobi T, Cohen-Hadar N, Yaron H, Hirszowicz E, Simantov Y, Bass S, Freeman A (2007) Wound debridement by continuous streaming of proteolytic enzyme solutions: effects on experimental chronic wound model in porcin. Wounds 19(7):192–200

    Google Scholar 

  • Yancey PH, Gerringer ME, Drazen JC, Rowden AA, Jamieson AJ (2014) Marine fish may be biochemically constrained from inhabiting the deepest ocean depths. Proc Natl Acad Sci USA 111:4461–4465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Z, Wang F, Gao Z, Jin L, Wu H (2013) Characterization of a κ-carrageenase from marine Cellulophaga lytica strain N5-2 and analysis of its degradation products. Int J Mol Sci 14(12):24592–24602

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan D, Lan D, Xin R, Yang B, Wang Y (2016) Screening and characterization of a thermostable lipase from marine Streptomyces sp. strain W007. Biotechnol Appl Biochem 63(1):41–50

    Article  PubMed  Google Scholar 

  • Zhang C, Kim S (2010) Research and application of marine microbial enzymes: status and prospects. Mar Drugs 8:1920–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang J, Zhang K, Liu X, Liu W, Ji A (2018) Characterization of a novel polyM-preferred alginate lyase from marine Vibrio splendidus OU02. Mar Drugs 16(9):295

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ololade Olatunji .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Olatunji, O. (2024). Enzyme. In: Aquatische Biopolymere. Springer Spektrum, Cham. https://doi.org/10.1007/978-3-031-48282-3_11

Download citation

Publish with us

Policies and ethics