Skip to main content

Forest Biomass as an Energy Resource

  • Chapter
  • First Online:
Forest Bioenergy

Part of the book series: Green Energy and Technology ((GREEN))

  • 142 Accesses

Abstract

Biomass is a highly versatile and reliable source of firm, renewable energy, capable of generating heat, power and various biofuels. The technologies used to convert biomass into fuels or energy can be broadly divided into two categories: biochemical and thermochemical. Biochemical pathways for forest biomass conversion into fuels still face techno-economic challenges, requiring further research to make them economically attractive. In contrast, thermochemical conversion processes, including gasification, pyrolysis and combustion, are well suited for forest biomass conversion, with several technologies having reached a fully commercial stage. Combustion, the most common and mature thermochemical pathway, converts forest biomass into heat, power, or combined heat and power. While traditional, inefficient and polluting methods are still used for burning forest biomass, modern, cleaner, and more efficient combustion technologies are available and in use. Some pathways based on gasification and pyrolysis are also commercially viable, providing solid, liquid and gaseous biofuels. These options offer versatility across combustion systems, heat engines, fuel cells and synthesis applications. This chapter provides a comprehensive overview of forest biomass as an energy source, covering processing technologies, technology readiness levels, fuel characteristics and pre-treatment methods. It emphasizes the potential and challenges associated with using forest biomass for sustainable energy production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gowlett JAJ (2016) The discovery of fire by humans: a long and convoluted process. Philos Trans R Soc B Biol Sci 371:20150164. https://doi.org/10.1098/rstb.2015.0164

    Article  Google Scholar 

  2. Grübler A, Nakićenović N (1996) Decarbonizing the global energy system. Technol Forecast Soc Change 53:97–110

    Article  Google Scholar 

  3. Fischer-Kowalski M, Schaffartzik A (2015) Energy availability and energy sources as determinants of societal development in a long-term perspective. MRS Energy Sustain 2:1. https://doi.org/10.1557/mre.2015.2

    Article  Google Scholar 

  4. IEA (2022) Energy statistics data browser. https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser. Accessed 7 Apr 2023

  5. IEA (2023) Interactive Sankey diagram. https://www.iea.org/sankey. Accessed 7 Apr 2023

  6. IEA (2022) World energy outlook 2022. International Energy Agency, Paris

    Google Scholar 

  7. WBA (2022) Global bioenergy statistics 2022. World Bioenergy Association, Stockholm

    Google Scholar 

  8. Hoogwijk M, Faaij A, van den Broek R et al (2003) Exploration of the ranges of the global potential of biomass for energy. Biomass Bioenergy 25:119–133. https://doi.org/10.1016/S0961-9534(02)00191-5

    Article  Google Scholar 

  9. Demirbas A (2005) Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog Energy Combust Sci 31:171–192. https://doi.org/10.1016/j.pecs.2005.02.002

    Article  Google Scholar 

  10. Abbasi T, Abbasi SA (2010) Biomass energy and the environmental impacts associated with its production and utilization. Renew Sustain Energy Rev 14:919–937. https://doi.org/10.1016/j.rser.2009.11.006

    Article  Google Scholar 

  11. Singh J (2015) Overview of electric power potential of surplus agricultural biomass from economic, social, environmental and technical perspective–a case study of Punjab. Renew Sustain Energy Rev 42:286–297. https://doi.org/10.1016/j.rser.2014.10.015

    Article  Google Scholar 

  12. Giwa T, Akbari M, Kumar A (2023) Techno-economic assessment of an integrated biorefinery producing bio-oil, ethanol, and hydrogen. Fuel 332:126022. https://doi.org/10.1016/j.fuel.2022.126022

    Article  Google Scholar 

  13. Röder M, Thiffault E, Martínez-Alonso C et al (2019) Understanding the timing and variation of greenhouse gas emissions of forest bioenergy systems. Biomass Bioenergy 121:99–114. https://doi.org/10.1016/j.biombioe.2018.12.019

    Article  Google Scholar 

  14. Welfle A, Röder M (2022) Mapping the sustainability of bioenergy to maximise benefits, mitigate risks and drive progress toward the sustainable development goals. Renew Energy 191:493–509. https://doi.org/10.1016/j.renene.2022.03.150

    Article  Google Scholar 

  15. Keoleian GA, Volk TA (2005) Renewable energy from willow biomass crops: life cycle energy, environmental and economic performance. Crit Rev Plant Sci 24:385–406. https://doi.org/10.1080/07352680500316334

    Article  Google Scholar 

  16. Spiecker S, Weber C (2014) The future of the European electricity system and the impact of fluctuating renewable energy–a scenario analysis. Energy Policy 65:185–197. https://doi.org/10.1016/j.enpol.2013.10.032

    Article  Google Scholar 

  17. Luderer G, Krey V, Calvin K et al (2014) The role of renewable energy in climate stabilization: results from the EMF27 scenarios. Clim Change 123:427–441. https://doi.org/10.1007/s10584-013-0924-z

    Article  Google Scholar 

  18. Demirbaş A (2006) Global renewable energy resources. Energy Sources Part Recovery Util Environ Eff 28:779–792. https://doi.org/10.1080/00908310600718742

    Article  Google Scholar 

  19. Gonçalves AC, Malico I, Sousa AMO (2018) Solid biomass from forest trees to energy: a review. In: Jacob-Lopes E, Queiroz Zepka L (eds) Renewable resources and biorefineries. Intech, London, UK, pp 23–46

    Google Scholar 

  20. IEA (2022) Renewables 2022. Analysis and forecast to 2027. International Energy Agency, Paris

    Google Scholar 

  21. McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54.https://doi.org/10.1016/S0960-8524(01)00119-5

  22. Vasco-Correa J, Khanal S, Manandhar A, Shah A (2018) Anaerobic digestion for bioenergy production: global status, environmental and techno-economic implications, and government policies. Bioresour Technol 247:1015–1026.https://doi.org/10.1016/j.biortech.2017.09.004

  23. Steffen R, Szolar O, Braun R (1998) Feedstocks for anaerobic digestion. University of Agricultural Sciences, Vienna

    Google Scholar 

  24. Rajendran K, Murthy GS (2019) Techno-economic and life cycle assessments of anaerobic digestion–a review. Biocatal Agric Biotechnol 20:101207. https://doi.org/10.1016/j.bcab.2019.101207

    Article  Google Scholar 

  25. Sawatdeenarunat C, Surendra KC, Takara D et al (2015) Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresour Technol 178:178–186. https://doi.org/10.1016/j.biortech.2014.09.103

    Article  Google Scholar 

  26. Paul S, Dutta A (2018) Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resour Conserv Recycl 130:164–174.https://doi.org/10.1016/j.resconrec.2017.12.005

  27. Abraham A, Mathew AK, Park H et al (2020) Pretreatment strategies for enhanced biogas production from lignocellulosic biomass. Bioresour Technol 301:122725. https://doi.org/10.1016/j.biortech.2019.122725

    Article  Google Scholar 

  28. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF et al (2006) Bio-ethanol–the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556. https://doi.org/10.1016/j.tibtech.2006.10.004

    Article  Google Scholar 

  29. von Schenck A, Berglin N, Uusitalo J (2013) Ethanol from Nordic wood raw material by simplified alkaline soda cooking pre-treatment. Appl Energy 102:229–240. https://doi.org/10.1016/j.apenergy.2012.10.003

    Article  Google Scholar 

  30. Kumakiri I, Yokota M, Tanaka R et al (2021) Process intensification in bio-ethanol production–recent developments in membrane separation. Processes 9:1028. https://doi.org/10.3390/pr9061028

    Article  Google Scholar 

  31. Papadokonstantakis S, Johnsson F (2018) Biomass conversion technologies–Definitions. D3.1 Report on definition of parameters for defining biomass conversion technologies. Chalmers University of Technology, Gothenburg

    Google Scholar 

  32. Brown A, Ebadian M, Saddler J et al (2020) The role of renewable transport fuels in decarbonizing road transport. Part 2–production technologies and costs. In: Bacovsky D (ed). International energy agency, p 122

    Google Scholar 

  33. Griffiths S, Sovacool BK, Kim J et al (2022) Decarbonizing the oil refining industry: a systematic review of sociotechnical systems, technological innovations, and policy options. Energy Res Soc Sci 89:102542. https://doi.org/10.1016/j.erss.2022.102542

    Article  Google Scholar 

  34. Traverso L, Colangeli M, Morese M et al (2020) Opportunities and constraints for implementation of cellulosic ethanol value chains in Europe. Biomass Bioenergy 141:105692. https://doi.org/10.1016/j.biombioe.2020.105692

    Article  Google Scholar 

  35. van Loo S, Koppejan J (2008) The handbook of biomass combustion and co-firing. Earthscan, London; Sterling, VA

    Google Scholar 

  36. Obernberger I (2009) Reached developments of biomass combustion technologies and future outlook. In: Proceedings of the 17th european biomass conference. Hamburg, Germany, pp 20–37

    Google Scholar 

  37. Eisentraut A, Brown A (2012) Technology roadmap: bioenergy for heat and power. International Energy Agency, Paris

    Google Scholar 

  38. Bauen AW (1999) Gasification-based biomass fuel cycles: an economic and environmental analysis at the regional level. PhD Thesis, King’s College London

    Google Scholar 

  39. Faaij A (2006) Modern biomass conversion technologies. Mitig Adapt Strateg Glob Change 11:343–375. https://doi.org/10.1007/s11027-005-9004-7

    Article  Google Scholar 

  40. Kar T, Keles S (2016) Environmental impacts of biomass combustion for heating and electricity generation. J Eng Res Appl Sci 5:458–465

    Google Scholar 

  41. Demirbaş A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42:1357–1378. https://doi.org/10.1016/S0196-8904(00)00137-0

    Article  Google Scholar 

  42. Landälv I, Maniatis K, Waldheim L et al (2018) Building up the future. Technology status and reliability of the value chains. European Commission, Luxembourg

    Google Scholar 

  43. Tinaut FV, Melgar A, Horrillo A, Díez de la Rosa A (2006) Method for predicting the performance of an internal combustion engine fuelled by producer gas and other low heating value gases. Fuel Process Technol 87:135–142. https://doi.org/10.1016/j.fuproc.2005.08.009

    Article  Google Scholar 

  44. Bain RL, Broer K (2011) Gasification. In: Brown RC (ed) Thermochemical processing of biomass. Conversion into fuels, chemicals and power. John Wiley & Son, Chichester, pp 47–77

    Google Scholar 

  45. Parvez AM, Afzal MT, Victor Hebb TG, Schmid M (2020) Utilization of CO2 in thermochemical conversion of biomass for enhanced product properties: a review. J CO2 Util 40:101217. https://doi.org/10.1016/j.jcou.2020.101217

  46. Göransson K, Söderlind U, He J, Zhang W (2011) Review of syngas production via biomass DFBGs. Renew Sustain Energy Rev 15:482–492. https://doi.org/10.1016/j.rser.2010.09.032

    Article  Google Scholar 

  47. Pröll T, Siefert IG, Friedl A, Hofbauer H (2005) Removal of NH3 from biomass gasification producer gas by water condensing in an organic solvent scrubber. Ind Eng Chem Res 44:1576–1584. https://doi.org/10.1021/ie049669v

    Article  Google Scholar 

  48. Al-attab KA, Zainal ZA (2014) Performance of a biomass fueled two-stage micro gas turbine (MGT) system with hot air production heat recovery unit. Appl Therm Eng 70:61–70. https://doi.org/10.1016/j.applthermaleng.2014.04.030

    Article  Google Scholar 

  49. Schulzke T (2019) Biomass gasification: conversion of forest residues into heat, electricity and base chemicals. Chem Pap 73:1833–1852. https://doi.org/10.1007/s11696-019-00801-1

    Article  Google Scholar 

  50. Archer SA, Steinberger-Wilckens R (2018) Systematic analysis of biomass derived fuels for fuel cells. Int J Hydrog Energy 43:23178–23192. https://doi.org/10.1016/j.ijhydene.2018.10.161

    Article  Google Scholar 

  51. Subotić V, Baldinelli A, Barelli L et al (2019) Applicability of the SOFC technology for coupling with biomass-gasifier systems: short- and long-term experimental study on SOFC performance and degradation behaviour. Appl Energy 256:113904. https://doi.org/10.1016/j.apenergy.2019.113904

    Article  Google Scholar 

  52. Najafi G, Hoseini SS, De Goey LPH, Yusaf T (2020) Optimization of combustion in micro combined heat and power (mCHP) system with the biomass-Stirling engine using SiO2 and Al2O3 nanofluids. Appl Therm Eng 169:114936. https://doi.org/10.1016/j.applthermaleng.2020.114936

    Article  Google Scholar 

  53. Schneider T, Ruf F, Müller D, Karl J (2021) Performance of a fluidized bed-fired Stirling engine as micro-scale combined heat and power system on wood pellets. Appl Therm Eng 189:116712. https://doi.org/10.1016/j.applthermaleng.2021.116712

    Article  Google Scholar 

  54. Borisov I, Khalatov A, Paschenko D (2022) The biomass fueled micro-scale CHP unit with Stirling engine and two-stage vortex combustion chamber. Heat Mass Transf 58:1091–1103. https://doi.org/10.1007/s00231-021-03165-z

    Article  Google Scholar 

  55. van der Meijden CM, Veringa HJ, Rabou LPLM (2010) The production of synthetic natural gas (SNG): a comparison of three wood gasification systems for energy balance and overall efficiency. Biomass Bioenergy 34:302–311. https://doi.org/10.1016/j.biombioe.2009.11.001

    Article  Google Scholar 

  56. Yan Q, Yu F, Liu J et al (2013) Catalytic conversion wood syngas to synthetic aviation turbine fuels over a multifunctional catalyst. Bioresour Technol 127:281–290. https://doi.org/10.1016/j.biortech.2012.09.069

    Article  Google Scholar 

  57. Dupuis DP, Grim RG, Nelson E et al (2019) High-octane gasoline from biomass: experimental, economic, and environmental assessment. Appl Energy 241:25–33. https://doi.org/10.1016/j.apenergy.2019.02.064

    Article  Google Scholar 

  58. Bengelsdorf FR, Dürre P (2017) Gas fermentation for commodity chemicals and fuels. Microb Biotechnol 10:1167–1170. https://doi.org/10.1111/1751-7915.12763

    Article  Google Scholar 

  59. García CA, Betancourt R, Cardona CA (2017) Stand-alone and biorefinery pathways to produce hydrogen through gasification and dark fermentation using Pinus Patula. J Environ Manag 203:689–703. https://doi.org/10.1016/j.jenvman.2016.04.001

    Article  Google Scholar 

  60. Peterson D, Haase S (2009) Market assessment of biomass gasification and combustion technology for small- and medium-scale applications. National Renewable Energy Laboratory, Golden, CO

    Google Scholar 

  61. Quirion-Blais O, Malladi KT, Sowlati T et al (2019) Analysis of feedstock requirement for the expansion of a biomass-fed district heating system considering daily variations in heat demand and biomass quality. Energy Convers Manag 187:554–564. https://doi.org/10.1016/j.enconman.2019.03.036

    Article  Google Scholar 

  62. Anca-Couce A, Hochenauer C, Scharler R (2021) Bioenergy technologies, uses, market and future trends with Austria as a case study. Renew Sustain Energy Rev 135:110237. https://doi.org/10.1016/j.rser.2020.110237

    Article  Google Scholar 

  63. Hrbek J (2022) Status report on thermal gasification of biomass and waste 2021. International Energy Agency

    Google Scholar 

  64. Hrbek J (2020) Past, present and future of thermal gasification of biomass and waste. Acta Innov 35:5–20. https://doi.org/10.32933/ActaInnovations.35.1

  65. Thomson R, Kwong P, Ahmad E, Nigam KDP (2020) Clean syngas from small commercial biomass gasifiers; a review of gasifier development, recent advances and performance evaluation. Int J Hydrog Energy 45:21087–21111. https://doi.org/10.1016/j.ijhydene.2020.05.160

    Article  Google Scholar 

  66. Miedema JH, van der Windt HJ, Moll HC (2018) Opportunities and barriers for biomass gasification for green gas in the Dutch residential sector. Energies 11:2969. https://doi.org/10.3390/en11112969

    Article  Google Scholar 

  67. di Gruttola F, Borello D (2021) Analysis of the EU secondary biomass availability and conversion processes to produce advanced biofuels: use of existing databases for assessing a metric evaluation for the 2025 perspective. Sustainability 13:7882. https://doi.org/10.3390/su13147882

    Article  Google Scholar 

  68. AECOM, Fichtner Consulting Engineers (2021) Advanced gasification technologies–Review and benchmarking, Department for Business, Energy & Industrial Strategy

    Google Scholar 

  69. Bridgwater AV (2003) Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91:87–102. https://doi.org/10.1016/S1385-8947(02)00142-0

    Article  Google Scholar 

  70. Hagemann N, Spokas K, Schmidt H-P et al (2018) Activated carbon, biochar and charcoal: linkages and synergies across pyrogenic carbon’s ABCs. Water 10:182. https://doi.org/10.3390/w10020182

    Article  Google Scholar 

  71. Pollex A, Ortwein A, Kaltschmitt M (2012) Thermo-chemical conversion of solid biofuels: conversion technologies and their classification. Biomass Convers Biorefinery 2:21–39. https://doi.org/10.1007/s13399-011-0025-z

    Article  Google Scholar 

  72. Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94. https://doi.org/10.1016/j.biombioe.2011.01.048

    Article  Google Scholar 

  73. Roy P, Dias G (2017) Prospects for pyrolysis technologies in the bioenergy sector: a review. Renew Sustain Energy Rev 77:59–69. https://doi.org/10.1016/j.rser.2017.03.136

    Article  Google Scholar 

  74. Homagain K, Shahi C, Luckai N, Sharma M (2014) Biochar-based bioenergy and its environmental impact in Northwestern Ontario Canada: a review. J For Res 25:737–748. https://doi.org/10.1007/s11676-014-0522-6

    Article  Google Scholar 

  75. Antal MJ, Grønli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42:1619–1640. https://doi.org/10.1021/ie0207919

    Article  Google Scholar 

  76. Rodrigues T, Braghini Junior A (2019) Charcoal: a discussion on carbonization kilns. J Anal Appl Pyrolysis 143:104670. https://doi.org/10.1016/j.jaap.2019.104670

    Article  Google Scholar 

  77. Schenkel Y, Bertaux P, Vanwijnbserghe S, Carre J (1998) An evaluation of the mound kiln carbonization technique. Biomass Bioenergy 14:505–516. https://doi.org/10.1016/S0961-9534(97)10033-2

    Article  Google Scholar 

  78. Manyà JJ (2012) Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ Sci Technol 46:7939–7954. https://doi.org/10.1021/es301029g

    Article  Google Scholar 

  79. Garcia-Nunez JA, Pelaez-Samaniego MR, Garcia-Perez ME et al (2017) Historical developments of pyrolysis reactors: a review. Energy Fuels 31:5751–5775. https://doi.org/10.1021/acs.energyfuels.7b00641

    Article  Google Scholar 

  80. Premchand P, Demichelis F, Chiaramonti D et al (2023) Biochar production from slow pyrolysis of biomass under CO2 atmosphere: a review on the effect of CO2 medium on biochar production, characterisation, and environmental applications. J Environ Chem Eng 11:110009. https://doi.org/10.1016/j.jece.2023.110009

  81. Oasmaa A, Lehto J, Solantausta Y, Kallio S (2021) Historical review on VTT fast pyrolysis bio-oil production and upgrading. Energy Fuels 35:5683–5695. https://doi.org/10.1021/acs.energyfuels.1c00177

    Article  Google Scholar 

  82. Lehto J, Oasmaa A, Solantausta Y et al (2014) Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass. Appl Energy 116:178–190. https://doi.org/10.1016/j.apenergy.2013.11.040

    Article  Google Scholar 

  83. Hunt J, DuPonte M, Sato D, Kawabata A (2010) The basics of biochar: a natural soil amendment. 30:1–6

    Google Scholar 

  84. McElligott K, Page-Dumroese D, Coleman M (2011) Bioenergy production systems and biochar application in forests: potential for renewable energy, soil enhancement, and carbon sequestration. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, CO

    Google Scholar 

  85. Grutzmacher P, Puga AP, Bibar MPS et al (2018) Carbon stability and mitigation of fertilizer induced N2O emissions in soil amended with biochar. Sci Total Environ 625:1459–1466. https://doi.org/10.1016/j.scitotenv.2017.12.196

    Article  Google Scholar 

  86. Rockwood DL, Ellis M, Liu R, et al (2020) Forest trees for biochar and carbon sequestration: production and benefits. In: Abdelhafez AA, Abbas MHH (eds) Applications of biochar for environmental safety. Intech, London, UK, pp 27–46

    Google Scholar 

  87. Zhang T, Walawender W, Fan L et al (2004) Preparation of activated carbon from forest and agricultural residues through CO activation. Chem Eng J 105:53–59. https://doi.org/10.1016/j.cej.2004.06.011

    Article  Google Scholar 

  88. Azargohar R, Dalai AK (2005) Biochar as a precursor of activated carbon. In: McMillan JD, Adney WS, Mielenz JR, Klasson KT (eds) Proceedings of the twenty-seventh symposium on biotechnology for fuels and chemical. Humana Press, Denver, Colorado, pp 762–773

    Google Scholar 

  89. Giudicianni P, Gargiulo V, Grottola CM et al (2021) Inherent metal elements in biomass pyrolysis: a review. Energy Fuels 35:5407–5478. https://doi.org/10.1021/acs.energyfuels.0c04046

    Article  Google Scholar 

  90. Yogalakshmi KN, Poornima DT, Sivashanmugam P et al (2022) Lignocellulosic biomass-based pyrolysis: a comprehensive review. Chemosphere 286:131824. https://doi.org/10.1016/j.chemosphere.2021.131824

    Article  Google Scholar 

  91. Sorunmu Y, Billen P, Spatari S (2020) A review of thermochemical upgrading of pyrolysis bio-oil: techno-economic analysis, life cycle assessment, and technology readiness. GCB Bioenergy 12:4–18. https://doi.org/10.1111/gcbb.12658

    Article  Google Scholar 

  92. Elliot DC (2011) Hydrothermal processing. In: Brown RC (ed) Thermochemical processing of biomass. Conversion into fuels, chemicals and power. John Wiley & Son, Chichester, UK, pp 200–231

    Google Scholar 

  93. Tekin K, Karagöz S, Bektaş S (2014) A review of hydrothermal biomass processing. Renew Sustain Energy Rev 40:673–687. https://doi.org/10.1016/j.rser.2014.07.216

    Article  Google Scholar 

  94. Khan N, Mohan S, Dinesha P (2021) Regimes of hydrochar yield from hydrothermal degradation of various lignocellulosic biomass: a review. J Clean Prod 288:125629. https://doi.org/10.1016/j.jclepro.2020.125629

    Article  Google Scholar 

  95. Cao Y, He M, Dutta S et al (2021) Hydrothermal carbonization and liquefaction for sustainable production of hydrochar and aromatics. Renew Sustain Energy Rev 152:111722. https://doi.org/10.1016/j.rser.2021.111722

    Article  Google Scholar 

  96. Brown RC (2011) Introduction to thermochemical processing of biomass into fuels, chemicals, and power. In: Brown RC (ed) Thermochemical processing of biomass. Conversion into fuels, chemicals and power. John Wiley & Son, Chichester, UK, pp 1–12

    Google Scholar 

  97. Kumar M, Olajire Oyedun A, Kumar A (2018) A review on the current status of various hydrothermal technologies on biomass feedstock. Renew Sustain Energy Rev 81:1742–1770. https://doi.org/10.1016/j.rser.2017.05.270

  98. Munawar MA, Khoja AH, Naqvi SR et al (2021) Challenges and opportunities in biomass ash management and its utilization in novel applications. Renew Sustain Energy Rev 150:111451. https://doi.org/10.1016/j.rser.2021.111451

    Article  Google Scholar 

  99. Bajwa DS, Peterson T, Sharma N et al (2018) A review of densified solid biomass for energy production. Renew Sustain Energy Rev 96:296–305. https://doi.org/10.1016/j.rser.2018.07.040

    Article  Google Scholar 

  100. Rowell R, Pettersen R, Tshabalala M (2012) Cell wall chemistry. In: Handbook of wood chemistry and wood composites, 2nd edn. CRC Press, pp 33–72

    Google Scholar 

  101. Williams CL, Emerson RM, Tumuluru JS (2017) Biomass compositional analysis for conversion to renewable fuels and chemicals. In: Tumuluru JS (ed) Biomass volume estimation and valorization for energy. InTech, Rijeka, Croatia, pp 251–270

    Google Scholar 

  102. Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24. https://doi.org/10.1016/S0168-1656(97)00073-4

    Article  Google Scholar 

  103. Jenkins BM, Baxter LL, Miles TR Jr, Miles TR (1998) Combustion properties of biomass. Fuel Process Technol 54:17–46

    Article  Google Scholar 

  104. Ragland KW, Aerts DJ, Baker AJ (1991) Properties of wood for combustion analysis. Bioresour Technol v:161–168. https://doi.org/10.1016/0960-8524(91)90205-X

  105. Prins M, Ptasinski K, Janssen F (2007) From coal to biomass gasification: comparison of thermodynamic efficiency. Energy 32:1248–1259. https://doi.org/10.1016/j.energy.2006.07.017

    Article  Google Scholar 

  106. Li W, Dang Q, Brown RC et al (2017) The impacts of biomass properties on pyrolysis yields, economic and environmental performance of the pyrolysis-bioenergy-biochar platform to carbon negative energy. Bioresour Technol 241:959–968. https://doi.org/10.1016/j.biortech.2017.06.049

    Article  Google Scholar 

  107. Elbersen W, Alakangas E, Elbersen B et al (2016) Explanatory note accompanying the database for standardized biomass characterization (and minimal biomass quality requirement for each biomass conversion technology). S2Biom project

    Google Scholar 

  108. Cardoso M, de Oliveira ÉD, Passos ML (2009) Chemical composition and physical properties of black liquors and their effects on liquor recovery operation in Brazilian pulp mills. Fuel 88:756–763. https://doi.org/10.1016/j.fuel.2008.10.016

    Article  Google Scholar 

  109. Hupa M, Karlström O, Vainio E (2017) Biomass combustion technology development–it is all about chemical details. Proc Combust Inst 36:113–134. https://doi.org/10.1016/j.proci.2016.06.152

    Article  Google Scholar 

  110. Obernberger I (1998) Decentralized biomass combustion: state of the art and future development. Biomass Bioenergy 14:33–56. https://doi.org/10.1016/S0961-9534(97)00034-2

    Article  Google Scholar 

  111. TNO (2023) Phyllis2, database for (treated) biomass, algae, feedstocks for biogas production and biochar. https://phyllis.nl/. Accessed 23 Jun 2023

  112. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46. https://doi.org/10.1016/S0960-8524(01)00118-3

    Article  Google Scholar 

  113. Vassilev SV, Vassileva CG, Vassilev VS (2015) Advantages and disadvantages of composition and properties of biomass in comparison with coal: an overview. Fuel 158:330–350. https://doi.org/10.1016/j.fuel.2015.05.050

    Article  Google Scholar 

  114. Kubica K, Paradiz B, Dilara P (2007) Small combustion installations: techniques, emissions and measures for emission reduction. Publications Office of the European Union, Luxembourg

    Google Scholar 

  115. Pettersen RC (1984) The chemical composition of wood. In: Rowell R (ed) The chemistry of solid wood. American Chemical Society, Washington, DC, pp 57–126

    Chapter  Google Scholar 

  116. Krajnc N (2015) Wood fuels handbook. Food and Agriculture Organization of the United Nations, Pristina, Kosovo

    Google Scholar 

  117. Hytönen J, Kaakkurivaara N, Kaakkurivaara T, Nurmi J (2018) Biomass equations for rubber tree (Hevea brasiliensis) components in Southern Thailand. J Trop For Sci 30:588–596. https://doi.org/10.26525/jtfs2018.30.4.588596

  118. Soleymani M, Shokrpoor S, Jaafarzadeh N (2023) A comprehensive study of essential properties of Conocarpus erectus as a potential bioenergy crop. Int J Environ Sci Technol 20:6147–6160. https://doi.org/10.1007/s13762-023-04878-w

    Article  Google Scholar 

  119. Brasil ACM, Brasil A, Malico I (2020) Evaluation of the electrical energy potential of woody biomass in the near region of the hydropower plant Tucuruí-Brazil. Waste Biomass Valorization 11:2297–2307. https://doi.org/10.1007/s12649-018-0407-6

    Article  Google Scholar 

  120. Magdeldin M, Järvinen M (2020) Supercritical water gasification of Kraft black liquor: process design, analysis, pulp mill integration and economic evaluation. Appl Energy 262:114558. https://doi.org/10.1016/j.apenergy.2020.114558

    Article  Google Scholar 

  121. Stegelmeier M, Schmitt VEM, Kaltschmitt M (2011) Pelletizing of autumn leaves—possibilities and limits. Biomass Convers Biorefinery 1:173–187. https://doi.org/10.1007/s13399-011-0016-0

    Article  Google Scholar 

  122. Niu Y, Lv Y, Lei Y et al (2019) Biomass torrefaction: properties, applications, challenges, and economy. Renew Sustain Energy Rev 115:109395. https://doi.org/10.1016/j.rser.2019.109395

    Article  Google Scholar 

  123. Phanphanich M, Mani S (2011) Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour Technol 102:1246–1253. https://doi.org/10.1016/j.biortech.2010.08.028

    Article  Google Scholar 

  124. Fagernäs L, Kuoppala E, Tiilikkala K, Oasmaa A (2012) Chemical composition of birch wood slow pyrolysis products. Energy Fuels 26:1275–1283. https://doi.org/10.1021/ef2018836

    Article  Google Scholar 

  125. Keipi T, Tolvanen H, Kokko L, Raiko R (2014) The effect of torrefaction on the chlorine content and heating value of eight woody biomass samples. Biomass Bioenergy 66:232–239. https://doi.org/10.1016/j.biombioe.2014.02.015

    Article  Google Scholar 

  126. Quaak P, Knoef H, Stassen H (1999) Energy from biomass: a review of combustion and gasification technologies. The World Bank, Washington, DC

    Book  Google Scholar 

  127. Nussbaumer T (2003) Combustion and co-combustion of biomass: fundamentals, technologies, and primary measures for emission reduction. Energy Fuels 17:1510–1521. https://doi.org/10.1021/ef030031q

    Article  Google Scholar 

  128. Bridgwater AV, Toft AJ, Brammer JG (2002) A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renew Sustain Energy Rev 6:181–246. https://doi.org/10.1016/S1364-0321(01)00010-7

    Article  Google Scholar 

  129. Hornung A, Stenzel F, Grunwald J (2021) Biochar—just a black matter is not enough. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-01284-5

    Article  Google Scholar 

  130. Kenney KL, Smith WA, Gresham GL, Westover TL (2013) Understanding biomass feedstock variability. Biofuels 4:111–127. https://doi.org/10.4155/bfs.12.83

    Article  Google Scholar 

  131. Temmerman M, Jensen PD, Hébert J (2013) Von Rittinger theory adapted to wood chip and pellet milling, in a laboratory scale hammermill. Biomass Bioenergy 56:70–81. https://doi.org/10.1016/j.biombioe.2013.04.020

    Article  Google Scholar 

  132. Channiwala SA, Parikh PP (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81:1051–1063. https://doi.org/10.1016/S0016-2361(01)00131-4

    Article  Google Scholar 

  133. Vieilledent G, Fischer FJ, Chave J et al (2018) New formula and conversion factor to compute basic wood density of tree species using a global wood technology database. Am J Bot 105:1653–1661. https://doi.org/10.1002/ajb2.1175

    Article  Google Scholar 

  134. Eisenbies MH, Volk TA, Therasme O, Hallen K (2019) Three bulk density measurement methods provide different results for commercial scale harvests of willow biomass chips. Biomass Bioenergy 124:64–73. https://doi.org/10.1016/j.biombioe.2019.03.015

    Article  Google Scholar 

  135. Baxter L (2005) Biomass-coal co-combustion: opportunity for affordable renewable energy. Fuel 84:1295–1302. https://doi.org/10.1016/j.fuel.2004.09.023

    Article  Google Scholar 

  136. S2Biom (2016) Database for standardized biomass characterization. https://s2biom.wenr.wur.nl/web/guest/biomass-characteristics. Accessed 14 Apr 2023

  137. Obernberger I, Thek G (2004) Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass Bioenergy 27:653–669. https://doi.org/10.1016/j.biombioe.2003.07.006

    Article  Google Scholar 

  138. Tumuluru JS, Sokhansanj S, Lim CJ et al (2010) Quality of wood pellets produced in British Columbia for export. Appl Eng Agric 26:1013–1020. https://doi.org/10.13031/2013.35902

  139. ISO (2022) ISO 16559:2022. Solid biofuels—vocabulary. https://www.iso.org/standard/75261.html. Accessed 31 Aug 2023

  140. Tumuluru JS, Wright CT, Hess JR, Kenney KL (2011) A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels Bioprod Biorefining 5:683–707. https://doi.org/10.1002/bbb.324

    Article  Google Scholar 

  141. Abdullah H, Wu H (2009) Biochar as a fuel: 1. Properties and grindability of biochars produced from the pyrolysis of mallee wood under slow-heating conditions. Energy Fuels 23:4174–4181. https://doi.org/10.1021/ef900494t

    Article  Google Scholar 

  142. Frombo F, Minciardi R, Robba M et al (2009) Planning woody biomass logistics for energy production: a strategic decision model. Biomass Bioenergy 33:372–383. https://doi.org/10.1016/j.biombioe.2008.09.008

    Article  Google Scholar 

  143. Berndes G, Abt B, Asikainen A et al (2016) Forest biomass, carbon neutrality and climate change mitigation. European Forest Institute

    Google Scholar 

  144. Hasan AR, Solo-Gabriele H, Townsend T (2011) Online sorting of recovered wood waste by automated XRF-technology: part II. Sorting efficiencies. Waste Manag 31:695–704. https://doi.org/10.1016/j.wasman.2010.10.024

    Article  Google Scholar 

  145. Naimi LJ, Sokhansanj S, Mani S et al (2006) Cost and performance of woody biomass size reduction for energy production. In: 2006 CSBE/SCGAB. American society of agricultural and biological engineers, Edmonton, AB Canada

    Google Scholar 

  146. Mirkouei A, Haapala KR, Sessions J, Murthy GS (2017) A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains. Renew Sustain Energy Rev 67:15–35. https://doi.org/10.1016/j.rser.2016.08.053

  147. Kumar A, Jones D, Hanna M (2009) Thermochemical biomass gasification: a review of the current status of the technology. Energies 2:556–581. https://doi.org/10.3390/en20300556

    Article  Google Scholar 

  148. Energy and Environmental Analysis, Eastern Research Group (2007) Biomass combined heat and power catalog of technologies. Environmental Protection Agency, U. S

    Google Scholar 

  149. Bridgwater AV (1995) The technical and economic feasibility of biomass gasification for power generation. Fuel 74:631–653

    Google Scholar 

  150. Schipfer F, Mäki E, Schmieder U et al (2022) Status of and expectations for flexible bioenergy to support resource efficiency and to accelerate the energy transition. Renew Sustain Energy Rev 158:112094. https://doi.org/10.1016/j.rser.2022.112094

    Article  Google Scholar 

  151. Tumuluru JS (2018) Effect of pellet die diameter on density and durability of pellets made from high moisture woody and herbaceous biomass. Carbon Resour Convers 1:44–54. https://doi.org/10.1016/j.crcon.2018.06.002

    Article  Google Scholar 

  152. Camia A, Giuntoli J, Jonsson R et al (2021) The use of woody biomass for energy production in the EU. Publications Office of the European Union, Luxembourg

    Google Scholar 

  153. Beauchemin PA, Tampier M (2008) Emissions from wood-fired combustion equipment. Envirochem Services Inc., North Vancouver, B. C.

    Google Scholar 

  154. Obernberger I, Thek G (2010) The pellet handbook: the production and thermal utilisation of pellets. Earthscan, London, UK

    Google Scholar 

  155. Sikkema R, Steiner M, Junginger M et al (2011) The European wood pellet markets: current status and prospects for 2020. Biofuels Bioprod Biorefining 5:250–278. https://doi.org/10.1002/bbb.277

    Article  Google Scholar 

  156. Nunes LJR, Matias JCO, Catalão JPS (2016) Wood pellets as a sustainable energy alternative in Portugal. Renew Energy 85:1011–1016. https://doi.org/10.1016/j.renene.2015.07.065

    Article  Google Scholar 

  157. Kristöfel C, Strasser C, Schmid E, Morawetz UB (2016) The wood pellet market in Austria: a structural market model analysis. Energy Policy 88:402–412. https://doi.org/10.1016/j.enpol.2015.10.039

    Article  Google Scholar 

  158. Kota KB, Shenbagaraj S, Sharma PK et al (2022) Biomass torrefaction: an overview of process and technology assessment based on global readiness level. Fuel 324:124663. https://doi.org/10.1016/j.fuel.2022.124663

    Article  Google Scholar 

  159. Koppejan J, Cremers M (2019) Biomass pre-treatment for bioenergy. Policy Report. IEA Bioenergy

    Google Scholar 

  160. Wild M, Calderón C (2021) Torrefied biomass and where is the sector currently standing in terms of research, technology development, and implementation. Front Energy Res 9:678492. https://doi.org/10.3389/fenrg.2021.678492

    Article  Google Scholar 

  161. Brachi P, Tumuluru JS, Nhuchhen DR, Chen W-H (2021) Editorial: “Torrefaction pretreatment for biomass upgrading: fundamentals and technologies.” Front Energy Res 9:769625. https://doi.org/10.3389/fenrg.2021.769625

    Article  Google Scholar 

  162. Livingston WR, Middelkamp J, Willeboer W et al (2016) The status of large scale biomass firing. IEA Bioenergy

    Google Scholar 

  163. Biermann CJ, Schultz TP, McGinnis GD (1984) Rapid steam hydrolysis/extraction of mixed hardwoods as a biomass pretreatment. J Wood Chem Technol 4:111–128

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by Fundação para a Ciência e a Tecnologia, through IDMEC, under LAETA [project UIDB/50022/2020].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Malico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malico, I. (2024). Forest Biomass as an Energy Resource. In: Gonçalves, A.C., Malico, I. (eds) Forest Bioenergy. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-48224-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48224-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48223-6

  • Online ISBN: 978-3-031-48224-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics