Abstract
This chapter concludes the book and discusses research challenges and future directions.
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
We have discussed the challenges and scopes of continually learning of conversational skills in Chap. 7 and will not repeat them here.
References
Z. Ke, B. Liu, H.X. Nianzu Ma, L. Shu, Achieving forgetting prevention and knowledge transfer in continual learning. Adv. Neural Inf. Process. Syst. 34, 22443–22456 (2021)
Z. Ke, B. Liu, H. Xu, L. Shu, Classic: continual and contrastive learning of aspect sentiment classification tasks, in Proceedings of 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP-2021) (2021b)
Z. Ke, Y. Shao, H. Lin, H. Xu, L. Shu, B. Liu, Adapting a language model while preserving its general knowledge, in Proceedings of The 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP-2022) (2022)
Z. Ke, B. Liu, X. Huang, Continual learning of a mixed sequence of similar and dissimilar tasks. Adv. Neural Inf. Process. Syst. 33, 18493–18504 (2020)
G. Kim, C. Xiao, T. Konishi, Z. Ke, B. Liu, A theoretical study on solving continual learning. 35, 5065–5079 (2022)
G. Kim, C. Xiao, T. Konishi, B. Liu, Learnability and algorithm for continual learning, in Proceedings of Fortieth International Conference on Machine Learning (ICML-2023) (2023)
S. Mazumder, B. Liu, S. Wang, S. Esmaeilpour, An application-independent approach to building task-oriented chatbots with interactive continual learning, in NeurIPS-2020 Workshop on Human in the Loop Dialogue Systems (2020)
S. Mazumder, N. Ma, B. Liu, Towards a continuous knowledge learning engine for chatbots (2018). arXiv:1802.06024
T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole, E. Platanios, A. Ritter, M. Samadi, B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov, M. Greaves, J. Welling, Never-ending learning, in Proceedings of the AAAI Conference on Artificial Intelligence (AAAI-15) (2015)
G. Pang, C. Shen, L. Cao, A. Van Den Hengel, Deep learning for anomaly detection: a review. ACM Comput. Surv. (CSUR) 54(2), 1–38 (2021)
J. Yang, K. Zhou, Y. Li, Z. Liu, Generalized out-of-distribution detection: a survey (2021). arXiv:2110.11334
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Mazumder, S., Liu, B. (2024). Conclusion and Future Directions. In: Lifelong and Continual Learning Dialogue Systems. Synthesis Lectures on Human Language Technologies. Springer, Cham. https://doi.org/10.1007/978-3-031-48189-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-48189-5_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-48188-8
Online ISBN: 978-3-031-48189-5
eBook Packages: Synthesis Collection of Technology (R0)
