Skip to main content

Motion Management and Tracking

  • Chapter
  • First Online:
A Practical Guide to MR-Linac
  • 130 Accesses

Abstract

Motion management on MR-Linacs ranges from the utilization of immobilization devices to gating the radiation beam based on tumor position. The overall goal of motion management is to have greater precision and accuracy in the treatment of tumors and reduce dose to healthy tissue. In this chapter, the different types of motion encountered in radiation therapy are described, a review of X-ray- and CT-based motion management approaches, motion management techniques using an MR-Linac, and, in detail, how motion is assessed and motion management strategies implemented throughout the radiation therapy workflow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brandner ED, Wu A, Chen H, et al. Abdominal organ motion measured using 4D CT. Int J Radiat Oncol Biol Phys. 2006;65:554–60.

    Article  PubMed  Google Scholar 

  2. Keall PJ, Mageras GS, Balter JM, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys. 2006;33:3874–900.

    Article  PubMed  Google Scholar 

  3. Liu HH, Balter P, Tutt T, et al. Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer. Int J Radiat Oncol Biol Phys. 2007;68:531–40.

    Article  PubMed  Google Scholar 

  4. Sim AJ, Palm RF, DeLozier KB, et al. MR-guided stereotactic body radiation therapy for intracardiac and pericardial metastases. Clin Transl Radiat Oncol. 2020;25:102–6.

    PubMed  PubMed Central  Google Scholar 

  5. Bernstein HM, Leon W, Daly ME, et al. Noninvasive stereotactic radiation for refractory ventricular tachycardia after failure of cardiac sympathetic denervation. JACC Case Rep. 2022;4:1189–94.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dees-Ribbers HM, Betgen A, Pos FJ, et al. Inter- and intra-fractional bladder motion during radiotherapy for bladder cancer: a comparison of full and empty bladders. Radiother Oncol. 2014;113:254–9.

    Article  PubMed  Google Scholar 

  7. Hamlet S, Ezzell G, Aref A. Larynx motion associated with swallowing during radiation therapy. Int J Radiat Oncol Biol Phys. 1994;28:467–70.

    Article  CAS  PubMed  Google Scholar 

  8. Li H, Chen H-C, Dolly S, et al. An integrated model-driven method for in-treatment upper airway motion tracking using cine MRI in head and neck radiation therapy. Med Phys. 2016;43:4700.

    Article  PubMed  Google Scholar 

  9. Bruijnen T, Stemkens B, Terhaard CHJ, et al. Intrafraction motion quantification and planning target volume margin determination of head-and-neck tumors using cine magnetic resonance imaging. Radiother Oncol. 2019;130:82–8.

    Article  PubMed  Google Scholar 

  10. Gurney-Champion OJ, McQuaid D, Dunlop A, et al. MRI-based assessment of 3D intrafractional motion of head and neck cancer for radiation therapy. Int J Radiat Oncol Biol Phys. 2018;100:306–16.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sixel KE, Aznar MC, Ung YC. Deep inspiration breath hold to reduce irradiated heart volume in breast cancer patients. Int J Radiat Oncol Biol Phys. 2001;49:199–204.

    Article  CAS  PubMed  Google Scholar 

  12. Mampuya WA, Nakamura M, Matsuo Y, et al. Interfraction variation in lung tumor position with abdominal compression during stereotactic body radiotherapy. Med Phys. 2013;40:091718.

    Article  PubMed  Google Scholar 

  13. Stemkens B, Paulson ES, Tijssen RHN. Nuts and bolts of 4D-MRI for radiotherapy. Phys Med Biol. 2018;63:21TR01.

    Article  CAS  PubMed  Google Scholar 

  14. Paulson ES, Ahunbay E, Chen X, et al. 4D-MRI driven MR-guided online adaptive radiotherapy for abdominal stereotactic body radiation therapy on a high field MR-Linac: implementation and initial clinical experience. Clin Transl Radiat Oncol. 2020;23:72–9.

    PubMed  PubMed Central  Google Scholar 

  15. Omari E, Jassar H, Straza M, et al. Daily 4DMRI assessed motion and its impact on ITV for non-gated MRI-guided adaptive radiation therapy of liver cancer. Hoboken, NJ: Wiley; 2022.

    Google Scholar 

  16. Winkel D, Bol GH, Kroon PS, et al. Adaptive radiotherapy: the Elekta Unity MR-linac concept. Clin Transl Radiat Oncol. 2019;18:54–9.

    PubMed  PubMed Central  Google Scholar 

  17. Mutic S, Dempsey JF. The ViewRay system: magnetic resonance-guided and controlled radiotherapy. Semin Radiat Oncol. 2014;24:196–9.

    Article  PubMed  Google Scholar 

  18. Cuccia F, Alongi F, Belka C, et al. Patient positioning and immobilization procedures for hybrid MR-Linac systems. Radiat Oncol. 2021;16:183.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Güngör G, Serbez İ, Temur B, et al. Time analysis of online adaptive magnetic resonance-guided radiation therapy workflow according to anatomical sites. Pract Radiat Oncol. 2021;11:e11–21.

    Article  PubMed  Google Scholar 

  20. Raaymakers BW, Jürgenliemk-Schulz IM, Bol GH, et al. First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Phys Med Biol. 2017;62:L41–50.

    Article  CAS  PubMed  Google Scholar 

  21. Kurz C, Buizza G, Landry G, et al. Medical physics challenges in clinical MR-guided radiotherapy. Radiat Oncol. 2020;15:93.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Menten MJ, Fast MF, Wetscherek A, et al. The impact of 2D cine MR imaging parameters on automated tumor and organ localization for MR-guided real-time adaptive radiotherapy. Phys Med Biol. 2018;63:235005.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Olch AJ, Gerig L, Li H, et al. Dosimetric effects caused by couch tops and immobilization devices: report of AAPM Task Group 176. Med Phys. 2014;41:061501.

    Article  PubMed  Google Scholar 

  24. van den Wollenberg W, de Ruiter P, Nowee ME, et al. Investigating the impact of patient arm position in an MR-linac on liver SBRT treatment plans. Med Phys. 2019;46:5144–51.

    Article  PubMed  Google Scholar 

  25. Intven MPW, de Mol van Otterloo SR, Mook S, et al. Online adaptive MR-guided radiotherapy for rectal cancer; feasibility of the workflow on a 1.5T MR-linac: clinical implementation and initial experience. Radiother Oncol. 2021;154:172–8.

    Article  CAS  PubMed  Google Scholar 

  26. Ge J, Santanam L, Yang D, et al. Accuracy and consistency of respiratory gating in abdominal cancer patients. Int J Radiat Oncol Biol Phys. 2013;85:854–61.

    Article  PubMed  Google Scholar 

  27. van Sörnsen de Koste JR, Palacios MA, Bruynzeel AME, et al. MR-guided gated stereotactic radiation therapy delivery for lung, adrenal, and pancreatic tumors: a geometric analysis. Int J Radiat Oncol Biol Phys. 2018;102:858–66.

    Article  PubMed  Google Scholar 

  28. Ehrbar S, Braga Käser S, Chamberlain M, et al. MR-guided beam gating: residual motion, gating efficiency and dose reconstruction for stereotactic treatments of the liver and lung. Radiother Oncol. 2022;174:101–8.

    Article  CAS  PubMed  Google Scholar 

  29. Lens E, Gurney-Champion OJ, Tekelenburg DR, et al. Abdominal organ motion during inhalation and exhalation breath-holds: pancreatic motion at different lung volumes compared. Radiother Oncol. 2016;121:268–75.

    Article  PubMed  Google Scholar 

  30. Rodriguez LL, Kotecha R, Tom MC, et al. Impact of breath-hold MR-guided radiotherapy (MRgRTBH) vs. free-breathing CT image-guided radiotherapy (CT-IGRTFB) on gastrointestinal sparing and dose conformality in adrenal SBRT. Int J Radiat Oncol Biol Phys. 2021;111:e527.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Zhaohui Han and Jennifer Campbell for their assistance in creating ViewRay MRIdian figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Huynh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huynh, E., Omari, E.A., Lim, S.N., Mak, R.H. (2024). Motion Management and Tracking. In: Das, I.J., Alongi, F., Yadav, P., Mittal, B.B. (eds) A Practical Guide to MR-Linac. Springer, Cham. https://doi.org/10.1007/978-3-031-48165-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48165-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48164-2

  • Online ISBN: 978-3-031-48165-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics