Skip to main content

Low-Field MR Imaging

  • Chapter
  • First Online:
A Practical Guide to MR-Linac
  • 155 Accesses

Abstract

Due to the recent technical advances in both software and hardware, low-field magnetic resonance imaging (MRI) systems are experiencing a renaissance. In the past, low-field MRI systems performed poorly and were generally underestimated with limited clinical applications. Recently several implementations, which are common with high-field MRI systems, are not only becoming possible with low-field MRI systems but also show unique scientific and economic advantages. In this chapter, we described the physical characteristics of low-field MRI systems and discussed their advantages and potentials, along with their novel clinical applications, including the integrated MR-guided radiotherapy system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hong AS, Levin D, Parker L, Rao VM, Ross-Degnan D, Wharam JF. Trends in diagnostic imaging utilization among Medicare and commercially insured adults from 2003 through 2016. Radiology. 2020;294(2):342–50.

    Article  PubMed  Google Scholar 

  2. Arnold TC, Freeman CW, Litt B, Stein JM. Low-field MRI: clinical promise and challenges. J Magn Reson Imaging. 2023;57(1):25–44.

    Article  PubMed  Google Scholar 

  3. Ginde AA, Foianini A, Renner DM, Valley M, Camargo CA. Availability and quality of computed tomography and magnetic resonance imaging equipment in U.S. emergency departments. Acad Emerg Med. 2008;15(8):780–3.

    Article  PubMed  Google Scholar 

  4. Health equipment—magnetic resonance imaging (MRI) units—OECD data. [Internet]. OECD; 2018. https://data.oecd.org/healtheqt/magnetic-resonance-imaging-mri-units.htm.

  5. WHO|Atlas: multiple sclerosis resources in the world 2008. [Internet]. WHO; 2018. http://www.who.int/mental_health/neurology/atlas_multiple_sclerosis_resources_2008/en/.

  6. Niendorf T, Sodickson DK. Parallel imaging in cardiovascular MRI: methods and applications. NMR Biomed. 2006;19(3):325–41.

    Article  PubMed  Google Scholar 

  7. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95.

    Article  PubMed  Google Scholar 

  8. Campbell-Washburn AE, Ramasawmy R, Restivo MC, Bhattacharya I, Basar B, Herzka DA, et al. Opportunities in interventional and diagnostic imaging by using high-performance low-field-strength MRI. Radiology. 2019;293(2):384–93.

    Article  PubMed  Google Scholar 

  9. Basar B, Sonmez M, Yildirim DK, Paul R, Herzka DA, Kocaturk O, et al. Susceptibility artifacts from metallic markers and cardiac catheterization devices on a high-performance 0.55 T MRI system. Magn Reson Imaging. 2021;77:14–20.

    Article  CAS  PubMed  Google Scholar 

  10. Hori M, Hagiwara A, Goto M, Wada A, Aoki S. Low-field magnetic resonance imaging: its history and renaissance. Invest Radiol. 2021;56(11):669–79.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hayashi N, Watanabe Y, Masumoto T, Mori H, Aoki S, Ohtomo K, et al. Utilization of low-field MR scanners. Magn Reson Med Sci. 2004;3(1):27–38.

    Article  PubMed  Google Scholar 

  12. Marques JP, Simonis FFJ, Webb AG. Low-field MRI: an MR physics perspective. J Magn Reson Imaging. 2019;49(6):1528–42.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ejbjerg BJ, Narvestad E, Jacobsen S, Thomsen HS, Østergaard M. Optimised, low cost, low field dedicated extremity MRI is highly specific and sensitive for synovitis and bone erosions in rheumatoid arthritis wrist and finger joints: comparison with conventional high field MRI and radiography. Ann Rheum Dis. 2005;64(9):1280–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yamada K, Miyahara K, Sato M, Hirose T, Yasugi Y, Matsuda Y, et al. Optimizing technical conditions for magnetic resonance imaging of the rat brain and abdomen in a low magnetic field. Vet Radiol Ultrasound. 1995;36(6):523–7.

    Article  Google Scholar 

  15. Iturri-Clavero F, Galbarriatu-Gutierrez L, Gonzalez-Uriarte A, Tamayo-Medel G, de Orte K, Martinez-Ruiz A, et al. “Low-field” intraoperative MRI: a new scenario, a new adaptation. Clin Radiol. 2016;71(11):1193–8.

    Article  CAS  PubMed  Google Scholar 

  16. Klein HM. Clinical low-field strength magnetic resonance imaging: a practical guide to accessible MRI. Springer; 2016.

    Google Scholar 

  17. Magnetic Resonance Imaging Systems Market by Architecture (Open MRI Systems and Closed MRI Systems (Standard Bore and Wide Bore)), Field Strength (Low-to-mid Field, High-field (1.5T and 3T), and Very-high Field)—Global Forecast to 2023 [Internet]. Markets and Markets. https://www.marketsandmarkets.com/requestsampleNew.asp?id=99.

  18. Gruber B, Froeling M, Leiner T, Klomp DWJ. RF coils: a practical guide for nonphysicists. J Magn Reson Imaging. 2018;48(3):590–604.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42(5):952–62.

    Article  CAS  PubMed  Google Scholar 

  20. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;47(6):1202–10.

    Article  PubMed  Google Scholar 

  21. McGee KP, Campeau NG, Witte RJ, Rossman PJ, Christopherson JA, Tryggestad EJ, et al. Evaluation of a new, highly flexible radiofrequency coil for MR simulation of patients undergoing external beam radiation therapy. J Clin Med. 2022;11(20):5984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu Y, Leong ATL, Zhao Y, Xiao L, Mak HKF, Tsang ACO, et al. A low-cost and shielding-free ultra-low-field brain MRI scanner. Nat Commun. 2021;12(1):7238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vogel MW, Guridi RP, Su J, Vegh V, Reutens DC. 3D-spatial encoding with permanent magnets for ultra-low field magnetic resonance imaging. Sci Rep. 2019;9(1):1522.

    Article  PubMed  PubMed Central  Google Scholar 

  24. McDaniel PC, Cooley CZ, Stockmann JP, Wald LL. The MR cap: a single-sided MRI system designed for potential point-of-care limited field-of-view brain imaging. Magn Reson Med. 2019;82(5):1946–60.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kodzwa R. ACR manual on contrast media: 2018 updates. Radiol Technol. 2019;91(1):97–100.

    PubMed  Google Scholar 

  26. Sammet S. Magnetic resonance safety. Abdom Radiol (NY). 2016;41(3):444–51.

    Article  PubMed  Google Scholar 

  27. Swoop® Portable MR Imaging System™ Details and specifications [Internet]. Hyperfine Inc. 2023. https://hyperfine.io/swoop/details-and-specifications.

  28. SYNAPTIVE MRI Everywhere for everyone [Internet]. [42] Synaptive Medical Inc. 2023. https://www.synaptivemedical.com/products/mri/.

  29. Koolstra K, O’Reilly T, Börnert P, Webb A. Image distortion correction for MRI in low field permanent magnet systems with strong B0 inhomogeneity and gradient field nonlinearities. Magn Reson Mater Phys Biol Med. 2021;34(4):631–42.

    Article  Google Scholar 

  30. Haskell MW, Nielsen JF, Noll DC. Off-resonance artifact correction for MRI: a review. NMR Biomed. 2023;36(5):e4867.

    Article  PubMed  Google Scholar 

  31. Guermazi A, Miaux Y, Zaim S, Peterfy CG, White D, Genant HK. Metallic artefacts in MR imaging: effects of main field orientation and strength. Clin Radiol. 2003;58(4):322–8.

    Article  CAS  PubMed  Google Scholar 

  32. Jungmann PM, Ganter C, Schaeffeler CJ, Bauer JS, Baum T, Meier R, et al. View-angle tilting and slice-encoding metal artifact correction for artifact reduction in MRI: experimental sequence optimization for orthopaedic tumor Endoprostheses and clinical application. PLoS One. 2015;10(4):e0124922.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mugler JP, Altes TA. Hyperpolarized 129ssMRI of the human lung. J Magn Reson Imaging. 2013;37(2):313–31.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Togao O, Tsuji R, Ohno Y, Dimitrov I, Takahashi M. Ultrashort echo time (UTE) MRI of the lung: assessment of tissue density in the lung parenchyma. Magn Reson Med. 2010;64(5):1491–8.

    Article  PubMed  Google Scholar 

  35. Campbell-Washburn AE, Malayeri AA, Jones EC, Moss J, Fennelly KP, Olivier KN, et al. T2-weighted lung imaging using a 0.55-T MRI system. Radiol Cardiothorac Imaging. 2021;3(3):e200611.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Campbell-Washburn AE, Suffredini AF, Chen MY. High-performance 0.55-T lung MRI in patient with COVID-19 infection. Radiology. 2021;299(2):E246–7.

    Article  PubMed  Google Scholar 

  37. Klaar R, Rabe M, Gaass T, Schneider MJ, Benlala I, Eze C, et al. Ventilation and perfusion MRI at a 0.35 T MR-Linac: feasibility and reproducibility study. Radiat Oncol. 2023;18(1):58.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bhattacharya I, Ramasawmy R, Javed A, Lowery M, Henry J, Mancini C, et al. Assessment of lung structure and regional function using 0.55 T MRI in patients with lymphangioleiomyomatosis. Invest Radiol. 2022;57(3):178–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ma D, Gulani V, Seiberlich N, Liu K, Sunshine JL, Duerk JL, et al. Magnetic resonance fingerprinting. Nature. 2013;495(7440):187–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. PubMed by Year—The Finest Worklog [Internet]. https://esperr.github.io/pubmed-by-year/.

  41. Edelman RR. The history of MR imaging as seen through the pages of radiology. Radiology. 2014;273(2 Suppl):S181–200.

    Article  PubMed  Google Scholar 

  42. Sarracanie M, Salameh N. Low-field MRI: how low can we go? A fresh view on an old debate. Front Phys. 2020;8:172.

    Article  Google Scholar 

  43. Rammohan N, Randall JW, Yadav P. History of technological advancements towards MR-Linac: the future of image-guided radiotherapy. J Clin Med. 2022;11(16):4730.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Scheffler K, Lehnhardt S. Principles and applications of balanced SSFP techniques. Eur Radiol. 2003;13(11):2409–18.

    Article  PubMed  Google Scholar 

  45. Sarracanie M. Fast quantitative low-field magnetic resonance imaging with OPTIMUM-optimized magnetic resonance fingerprinting using a stationary steady-state Cartesian approach and accelerated acquisition schedules. Invest Radiol. 2022;57(4):263–71.

    Article  CAS  PubMed  Google Scholar 

  46. Han F, Zhou Z, Han E, Gao Y, Nguyen KL, Finn JP, et al. Self-gated 4D multiphase, steady-state imaging with contrast enhancement (MUSIC) using rotating cartesian K-space (ROCK): validation in children with congenital heart disease. Magn Reson Med. 2017;78(2):472–83.

    Article  CAS  PubMed  Google Scholar 

  47. Han F, Zhou Z, Du D, Gao Y, Rashid S, Cao M, et al. Respiratory motion-resolved, self-gated 4D-MRI using rotating Cartesian K-space (ROCK): initial clinical experience on an MRI-guided radiotherapy system. Radiother Oncol. 2018;127(3):467–73.

    Article  PubMed  Google Scholar 

  48. Huang WY, Wen JB, Wu G, Yin B, Li JJ, Geng DY. Diffusion-weighted imaging for predicting and monitoring primary central nervous system lymphoma treatment response. AJNR Am J Neuroradiol. 2016;37(11):2010–8.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yang Y, Cao M, Sheng K, Gao Y, Chen A, Kamrava M, et al. Longitudinal diffusion MRI for treatment response assessment: preliminary experience using an MRI-guided tri-cobalt 60 radiotherapy system. Med Phys. 2016;43(3):1369–73.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gao Y, Han F, Zhou Z, Cao M, Kaprealian T, Kamrava M, et al. Distortion-free diffusion MRI using an MRI-guided Tri-Cobalt 60 radiotherapy system: sequence verification and preliminary clinical experience. Med Phys. 2017;44(10):5357–66.

    Article  CAS  PubMed  Google Scholar 

  51. Lewis B, Guta A, Mackey S, Gach HM, Mutic S, Green O, et al. Evaluation of diffusion-weighted MRI and geometric distortion on a 0.35T MR-LINAC at multiple gantry angles. J Appl Clin Med Phys. 2021;22(2):118–25.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Nardini M, Capotosti A, Mazzoni LN, Cusumano D, Boldrini L, Chiloiro G, et al. Tuning the optimal diffusion-weighted MRI parameters on a 0.35-T MR-Linac for clinical implementation: a phantom study. Front Oncol. 2022;12:867792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gao Y, Ghodrati V, Kalbasi A, Fu J, Ruan D, Cao M, et al. Prediction of soft tissue sarcoma response to radiotherapy using longitudinal diffusion MRI and a deep neural network with generative adversarial network-based data augmentation. Med Phys. 2021;48(6):3262–372.

    Article  PubMed  Google Scholar 

  54. Gao Y, Kalbasi A, Hsu W, Ruan D, Fu J, Shao J, et al. Treatment effect prediction for sarcoma patients treated with preoperative radiotherapy using radiomics features from longitudinal diffusion-weighted MRIs. Phys Med Biol. 2020;65(17):175006.

    Article  PubMed  Google Scholar 

  55. Shaverdian N, Yang Y, Hu P, Hart S, Sheng K, Lamb J, et al. Feasibility evaluation of diffusion-weighted imaging using an integrated MRI-radiotherapy system for response assessment to neoadjuvant therapy in rectal cancer. Br J Radiol. 2017;90(1071):20160739.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161(2):401–7.

    Article  PubMed  Google Scholar 

  57. Iima M, Le Bihan D. Clinical Intravoxel incoherent motion and diffusion MR imaging: past, present, and future. Radiology. 2016;278(1):13–32.

    Article  PubMed  Google Scholar 

  58. Ingo C, Magin RL, Colon-Perez L, Triplett W, Mareci TH. On random walks and entropy in diffusion-weighted magnetic resonance imaging studies of neural tissue: random walks and entropy in diffusion-weighted MRI. Magn Reson Med. 2014;71(2):617–27.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Karaman MM, Sui Y, Wang H, Magin RL, Li Y, Zhou XJ. Differentiating low- and high-grade pediatric brain tumors using a continuous-time random-walk diffusion model at high b -values: pediatric brain tumors using a CTRW diffusion model. Magn Reson Med. 2016;76(4):1149–57.

    Article  PubMed  Google Scholar 

  60. Pham J, Savjani RR, Gao Y, Cao M, Hu P, Sheng K, et al. Evaluation of T2-weighted MRI for visualization and sparing of urethra with MR-guided radiation therapy (MRgRT) on-board MRI. Cancers. 2021;13(14):3564.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Pham J, Savjani RR, Yoon SM, Yang T, Gao Y, Cao M, et al. Urethral interfractional geometric and dosimetric variations of prostate cancer patients: a study using an onboard MRI. Front Oncol. 2022;12:916254.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, Y., Li, S., Low, D.A., Li, Z., Hu, P. (2024). Low-Field MR Imaging. In: Das, I.J., Alongi, F., Yadav, P., Mittal, B.B. (eds) A Practical Guide to MR-Linac. Springer, Cham. https://doi.org/10.1007/978-3-031-48165-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48165-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48164-2

  • Online ISBN: 978-3-031-48165-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics