Skip to main content

Treatment of Head and Neck Cancers with MR-Linac

  • Chapter
  • First Online:
A Practical Guide to MR-Linac

Abstract

Head and neck cancers constitute a heterogeneous group of tumors with varying behaviors. Treatment of these tumors is complex and often involves high doses of radiotherapy delivered to an anatomically constrained area with many nearby organs at risk. Consequently, treatments are often quite toxic. MR-Linac (MRL) radiotherapy offers the potential to improve toxicity outcomes by allowing precise delivery of radiation to the target volumes while minimizing radiation exposure to nearby structures. This technique offers the possibility of treatment adaptation with volume and/or dose escalation or de-escalation as lesions change in size. MR-guided radiotherapy also provides anatomical and functional information, which could help monitor treatment response and develop image-based predictive outcome models. However, MRL radiotherapy has its limitations such as the inability to support volumetric arc therapy. Data on the use of MRL for head and neck cancers is also limited and validation studies are under way. This chapter highlights the current literature, potential benefits, technical considerations, limitations, and future directions of MRL radiotherapy for head and neck cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 2009;45(4–5):309–16.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.

    Article  PubMed  Google Scholar 

  3. Rettig EM, Fakhry C, Khararjian A, Westra WH. Age profile of patients with oropharyngeal squamous cell carcinoma. JAMA Otolaryngol Head Neck Surg. 2018;144(6):538–9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chaturvedi AK, Engels EA, Pfeiffer RM, Hernandez BY, Xiao W, Kim E, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol. 2011;29(32):4294–301.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Patel EJ, Oliver JR, Jacobson AS, Li Z, Hu KS, Tam M, et al. Human papillomavirus in patients with hypopharyngeal squamous cell carcinoma. Otolaryngol Head Neck Surg. 2022;166(1):109–17.

    Article  PubMed  Google Scholar 

  6. Ohno S, Arnheiter H, Dubois-Dalcq M, Lazzarini RA. Immunocytochemical localization of vesicular stomatitis virus proteins N and NS with monoclonal antibodies. Histochemistry. 1985;82(2):185–96.

    Article  CAS  PubMed  Google Scholar 

  7. Chung CH, Zhang Q, Kong CS, Harris J, Fertig EJ, Harari PM, et al. p16 protein expression and human papillomavirus status as prognostic biomarkers of nonoropharyngeal head and neck squamous cell carcinoma. J Clin Oncol. 2014;32(35):3930–8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stephen JK, Divine G, Chen KM, Chitale D, Havard S, Worsham MJ. Significance of p16 in site-specific HPV positive and HPV negative head and neck squamous cell carcinoma. Cancer Clin Oncol. 2013;2(1):51–61.

    PubMed  Google Scholar 

  9. Slaughter DP. Multicentric origin of intraoral carcinoma. Surgery. 1946;20(1):133–46.

    CAS  PubMed  Google Scholar 

  10. Adelstein DJ, Li Y, Adams GL, Wagner H Jr, Kish JA, Ensley JF, et al. An intergroup phase III comparison of standard radiation therapy and two schedules of concurrent chemoradiotherapy in patients with unresectable squamous cell head and neck cancer. J Clin Oncol. 2003;21(1):92–8.

    Article  PubMed  Google Scholar 

  11. Pignon JP, le Maitre A, Maillard E, Bourhis J, MACH-NC Collaborative Group. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17,346 patients. Radiother Oncol. 2009;92(1):4–14.

    Article  PubMed  Google Scholar 

  12. Zhang Y, Chen L, Hu GQ, Zhang N, Zhu XD, Yang KY, et al. Gemcitabine and cisplatin induction chemotherapy in nasopharyngeal carcinoma. N Engl J Med. 2019;381(12):1124–35.

    Article  CAS  PubMed  Google Scholar 

  13. Lefebvre JL, Andry G, Chevalier D, Luboinski B, Collette L, Traissac L, et al. Laryngeal preservation with induction chemotherapy for hypopharyngeal squamous cell carcinoma: 10-year results of EORTC trial 24891. Ann Oncol. 2012;23(10):2708–14.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sun L, Candelieri-Surette D, Anglin-Foote T, Lynch JA, Maxwell KN, D’Avella C, et al. Cetuximab-based vs carboplatin-based chemoradiotherapy for patients with head and neck cancer. JAMA Otolaryngol Head Neck Surg. 2022;148(11):1022–8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Patil VM, Noronha V, Menon N, Singh A, Ghosh-Laskar S, Budrukkar A, et al. Results of phase III randomized trial for use of docetaxel as a radiosensitizer in patients with head and neck cancer, unsuitable for cisplatin-based chemoradiation. J Clin Oncol. 2023;41(13):2350–61.

    Article  CAS  PubMed  Google Scholar 

  16. Bonner JA, Harari PM, Giralt J, Cohen RB, Jones CU, Sur RK, et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol. 2010;11(1):21–8.

    Article  CAS  PubMed  Google Scholar 

  17. Overgaard J, Hansen HS, Specht L, Overgaard M, Grau C, Andersen E, et al. Five compared with six fractions per week of conventional radiotherapy of squamous-cell carcinoma of head and neck: DAHANCA 6 and 7 randomised controlled trial. Lancet. 2003;362(9388):933–40.

    Article  PubMed  Google Scholar 

  18. Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tan PF, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363(1):24–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Becker M, Zbaren P, Casselman JW, Kohler R, Dulguerov P, Becker CD. Neoplastic invasion of laryngeal cartilage: reassessment of criteria for diagnosis at MR imaging. Radiology. 2008;249(2):551–9.

    Article  PubMed  Google Scholar 

  20. Ong CK, Chong VF. Imaging of perineural spread in head and neck tumours. Cancer Imaging. 2010;10 Spec no A(1A):S92–8.

    Article  CAS  PubMed  Google Scholar 

  21. Kim JH, Choi KY, Lee SH, Lee DJ, Park BJ, Yoon DY, et al. The value of CT, MRI, and PET-CT in detecting retropharyngeal lymph node metastasis of head and neck squamous cell carcinoma. BMC Med Imaging. 2020;20(1):88.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Adams S, Baum RP, Stuckensen T, Bitter K, Hor G. Prospective comparison of 18F-FDG PET with conventional imaging modalities (CT, MRI, US) in lymph node staging of head and neck cancer. Eur J Nucl Med. 1998;25(9):1255–60.

    Article  CAS  PubMed  Google Scholar 

  23. Schmid DT, Stoeckli SJ, Bandhauer F, Huguenin P, Schmid S, von Schulthess GK, et al. Impact of positron emission tomography on the initial staging and therapy in locoregional advanced squamous cell carcinoma of the head and neck. Laryngoscope. 2003;113(5):888–91.

    Article  PubMed  Google Scholar 

  24. Chauhan D, Rawat S, Sharma MK, Ahlawat P, Pal M, Gupta G, et al. Improving the accuracy of target volume delineation by combined use of computed tomography, magnetic resonance imaging and positron emission tomography in head and neck carcinomas. J Cancer Res Ther. 2015;11(4):746–51.

    Article  CAS  PubMed  Google Scholar 

  25. Figen M, Colpan Oksuz D, Duman E, Prestwich R, Dyker K, Cardale K, et al. Radiotherapy for head and neck cancer: evaluation of triggered adaptive replanning in routine practice. Front Oncol. 2020;10:579917.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mohan R, Wu Q, Manning M, Schmidt-Ullrich R. Radiobiological considerations in the design of fractionation strategies for intensity-modulated radiation therapy of head and neck cancers. Int J Radiat Oncol Biol Phys. 2000;46(3):619–30.

    Article  CAS  PubMed  Google Scholar 

  27. Pagh A, Grau C, Overgaard J. Failure pattern and salvage treatment after radical treatment of head and neck cancer. Acta Oncol. 2016;55(5):625–32.

    Article  PubMed  Google Scholar 

  28. Chuang SC, Scelo G, Tonita JM, Tamaro S, Jonasson JG, Kliewer EV, et al. Risk of second primary cancer among patients with head and neck cancers: a pooled analysis of 13 cancer registries. Int J Cancer. 2008;123(10):2390–6.

    Article  CAS  PubMed  Google Scholar 

  29. Kim YS. Reirradiation of head and neck cancer in the era of intensity-modulated radiotherapy: patient selection, practical aspects, and current evidence. Radiat Oncol J. 2017;35(1):1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  30. You R, Liu YP, Xie YL, Lin C, Duan CY, Chen DP, et al. Hyperfractionation compared with standard fractionation in intensity-modulated radiotherapy for patients with locally advanced recurrent nasopharyngeal carcinoma: a multicentre, randomised, open-label, phase 3 trial. Lancet. 2023;401:917.

    Article  PubMed  Google Scholar 

  31. Yamazaki H, Kodani N, Ogita M, Sato K, Himei K. Reirradiation of head and neck cancer focusing on hypofractionated stereotactic body radiation therapy. Radiat Oncol. 2011;6:98.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Phan J, Sio TT, Nguyen TP, Takiar V, Gunn GB, Garden AS, et al. Reirradiation of head and neck cancers with proton therapy: outcomes and analyses. Int J Radiat Oncol Biol Phys. 2016;96(1):30–41.

    Article  PubMed  Google Scholar 

  33. Rodin J, Bar-Ad V, Cognetti D, Curry J, Johnson J, Zender C, et al. A systematic review of treating recurrent head and neck cancer: a reintroduction of brachytherapy with or without surgery. J Contemp Brachytherapy. 2018;10(5):454–62.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Le QT, Fu KK, Kroll S, Ryu JK, Quivey JM, Meyler TS, et al. Influence of fraction size, total dose, and overall time on local control of T1-T2 glottic carcinoma. Int J Radiat Oncol Biol Phys. 1997;39(1):115–26.

    Article  CAS  PubMed  Google Scholar 

  35. Kachhwaha A, Jakhar SL, Syiem T, Sharma N, Kumar HS, Sharma A. Hypofractionated radiotherapy versus conventional radiotherapy in early glottic cancer T1-2N0M0: a randomized study. J Cancer Res Ther. 2021;17(6):1499–502.

    Article  PubMed  Google Scholar 

  36. Schwartz DL, Sosa A, Chun SG, Ding C, Xie XJ, Nedzi LA, et al. SBRT for early-stage glottic larynx cancer-initial clinical outcomes from a phase I clinical trial. PLoS One. 2017;12(3):e0172055.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sher DJ, Timmerman RD, Nedzi L, Ding C, Pham NL, Zhao B, et al. Phase 1 fractional dose-escalation study of equipotent stereotactic radiation therapy regimens for early-stage Glottic larynx cancer. Int J Radiat Oncol Biol Phys. 2019;105(1):110–8.

    Article  PubMed  Google Scholar 

  38. Kang BH, Yu T, Kim JH, Park JM, Kim JI, Chung EJ, et al. Early closure of a phase 1 clinical trial for SABR in early-stage glottic cancer. Int J Radiat Oncol Biol Phys. 2019;105(1):104–9.

    Article  PubMed  Google Scholar 

  39. Mohamed ASR, Bahig H, Aristophanous M, Blanchard P, Kamal M, Ding Y, et al. Prospective in silico study of the feasibility and dosimetric advantages of MRI-guided dose adaptation for human papillomavirus positive oropharyngeal cancer patients compared with standard IMRT. Clin Transl Radiat Oncol. 2018;11:11–8.

    PubMed  PubMed Central  Google Scholar 

  40. McDonald BA, Vedam S, Yang J, Wang J, Castillo P, Lee B, et al. Initial feasibility and clinical implementation of daily MR-guided adaptive head and neck cancer radiation therapy on a 1.5T MR-Linac system: prospective R-IDEAL 2a/2b systematic clinical evaluation of technical innovation. Int J Radiat Oncol Biol Phys. 2021;109(5):1606–18.

    Article  PubMed  Google Scholar 

  41. Chen AM, Cao M, Hsu S, Lamb J, Mikaeilian A, Yang Y, et al. Magnetic resonance imaging guided reirradiation of recurrent and second primary head and neck cancer. Adv Radiat Oncol. 2017;2(2):167–75.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chen AM, Hsu S, Lamb J, Yang Y, Agazaryan N, Steinberg ML, et al. MRI-guided radiotherapy for head and neck cancer: initial clinical experience. Clin Transl Oncol. 2018;20(2):160–8.

    Article  CAS  PubMed  Google Scholar 

  43. Bahig H, Yuan Y, Mohamed ASR, Brock KK, Ng SP, Wang J, et al. Magnetic resonance-based response assessment and dose adaptation in human papilloma virus positive tumors of the oropharynx treated with radiotherapy (MR-ADAPTOR): an R-IDEAL stage 2a-2b/Bayesian phase II trial. Clin Transl Radiat Oncol. 2018;13:19–23.

    PubMed  PubMed Central  Google Scholar 

  44. Kyzas PA, Evangelou E, Denaxa-Kyza D, Ioannidis JP. 18F-fluorodeoxyglucose positron emission tomography to evaluate cervical node metastases in patients with head and neck squamous cell carcinoma: a meta-analysis. J Natl Cancer Inst. 2008;100(10):712–20.

    Article  PubMed  Google Scholar 

  45. Kim SY, Kim JS, Doo H, Lee H, Lee JH, Cho KJ, et al. Combined [18F]fluorodeoxyglucose positron emission tomography and computed tomography for detecting contralateral neck metastases in patients with head and neck squamous cell carcinoma. Oral Oncol. 2011;47(5):376–80.

    Article  PubMed  Google Scholar 

  46. Nguyen A, Luginbuhl A, Cognetti D, Van Abel K, Bar-Ad V, Intenzo C, et al. Effectiveness of PET/CT in the preoperative evaluation of neck disease. Laryngoscope. 2014;124(1):159–64.

    Article  PubMed  Google Scholar 

  47. Vishwanath V, Jafarieh S, Rembielak A. The role of imaging in head and neck cancer: an overview of different imaging modalities in primary diagnosis and staging of the disease. J Contemp Brachytherapy. 2020;12(5):512–8.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Widmann G, Henninger B, Kremser C, Jaschke W. MRI sequences in head & neck radiology—state of the art. Rofo. 2017;189(5):413–22.

    Article  PubMed  Google Scholar 

  49. Ross MR, Schomer DF, Chappell P, Enzmann DR. MR imaging of head and neck tumors: comparison of T1-weighted contrast-enhanced fat-suppressed images with conventional T2-weighted and fast spin-echo T2-weighted images. AJR Am J Roentgenol. 1994;163(1):173–8.

    Article  CAS  PubMed  Google Scholar 

  50. Gupta A, Dunlop A, Mitchell A, McQuaid D, Nill S, Barnes H, et al. Online adaptive radiotherapy for head and neck cancers on the MR linear accelerator: introducing a novel modified adapt-to-shape approach. Clin Transl Radiat Oncol. 2022;32:48–51.

    CAS  PubMed  Google Scholar 

  51. Salzillo TC, Dresner AM, Way A, Wahid KA, McDonald BA, Mulder S, et al. Development and implementation of optimized endogenous contrast sequences for delineation in adaptive radiotherapy on a 1.5T MR-Linear-accelerator (MR-Linac): a prospective R-IDEAL Stage 0-2a quantitative/qualitative evaluation of in vivo site-specific quality-assurance using a 3D T2 fat-suppressed platform for head and neck cancer. medRxiv. 2022:2022.06.24.22276839.

    Google Scholar 

  52. Phillips CD, Gay SB, Newton RL, Levine PA. Gadolinium-enhanced MRI of tumors of the head and neck. Head Neck. 1990;12(4):308–15.

    Article  CAS  PubMed  Google Scholar 

  53. Wang J, Salzillo T, Jiang Y, Mackeyev Y, David Fuller C, Chung C, et al. Stability of MRI contrast agents in high-energy radiation of a 1.5T MR-Linac. Radiother Oncol. 2021;161:55–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mahmood F, Nielsen UG, Jorgensen CB, Brink C, Thomsen HS, Hansen RH. Safety of gadolinium based contrast agents in magnetic resonance imaging-guided radiotherapy—an investigation of chelate stability using relaxometry. Phys Imaging Radiat Oncol. 2022;21:96–100.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ersoy H, Rybicki FJ. Biochemical safety profiles of gadolinium-based extracellular contrast agents and nephrogenic systemic fibrosis. J Magn Reson Imaging. 2007;26(5):1190–7.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Petronek MS, Steinbach EJ, Kalen AL, Builta ZJ, Callaghan CM, Hyer DE, et al. Assessment of Gadobutrol safety in combination with ionizing radiation using a preclinical MRI-guided radiotherapy model. Radiat Res. 2021;195(3):230–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hales RB, Chuter R, McWilliam A, Salah A, Dubec M, Freear L, et al. The impact of gadolinium-based MR contrast on radiotherapy planning for oropharyngeal treatment on the MR Linac. Med Phys. 2022;49(1):510–20.

    Article  CAS  PubMed  Google Scholar 

  58. Payabvash S. Quantitative diffusion magnetic resonance imaging in head and neck tumors. Quant Imaging Med Surg. 2018;8(10):1052–65.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Habrich J, Boeke S, Nachbar M, Nikolaou K, Schick F, Gani C, et al. Repeatability of diffusion-weighted magnetic resonance imaging in head and neck cancer at a 1.5 T MR-Linac. Radiother Oncol. 2022;174:141–8.

    Article  PubMed  Google Scholar 

  60. McDonald BA, Zachiu C, Christodouleas J, Naser MA, Ruschin M, Sonke JJ, et al. Dose accumulation for MR-guided adaptive radiotherapy: from practical considerations to state-of-the-art clinical implementation. Front Oncol. 2022;12:1086258.

    Article  PubMed  Google Scholar 

  61. Yang Y, Cao M, Sheng K, Gao Y, Chen A, Kamrava M, et al. Longitudinal diffusion MRI for treatment response assessment: preliminary experience using an MRI-guided tri-cobalt 60 radiotherapy system. Med Phys. 2016;43(3):1369–73.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kooreman ES, van Houdt PJ, Keesman R, Pos FJ, van Pelt VWJ, Nowee ME, et al. ADC measurements on the Unity MR-linac - a recommendation on behalf of the Elekta Unity MR-linac consortium. Radiother Oncol. 2020;153:106–13.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Schakel T, Hoogduin JM, Terhaard CHJ, Philippens MEP. Technical note: diffusion-weighted MRI with minimal distortion in head-and-neck radiotherapy using a turbo spin echo acquisition method. Med Phys. 2017;44(8):4188–93.

    Article  CAS  PubMed  Google Scholar 

  64. Weissmann T, Speer S, Putz F, Lettmaier S, Schubert P, Shariff M, et al. Reduction of elective radiotherapy treatment volume in definitive treatment of locally advanced head and neck cancer-comparison of a prospective trial with a revised simulated contouring approach. J Clin Med. 2021;10(20):4653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gregoire V, Ang K, Budach W, Grau C, Hamoir M, Langendijk JA, et al. Delineation of the neck node levels for head and neck tumors: a 2013 update. DAHANCA, EORTC, HKNPCSG, NCIC CTG, NCRI, RTOG, TROG consensus guidelines. Radiother Oncol. 2014;110(1):172–81.

    Article  PubMed  Google Scholar 

  66. Gregoire V, Evans M, Le QT, Bourhis J, Budach V, Chen A, et al. Delineation of the primary tumour clinical target volumes (CTV-P) in laryngeal, hypopharyngeal, oropharyngeal and oral cavity squamous cell carcinoma: AIRO, CACA, DAHANCA, EORTC, GEORCC, GORTEC, HKNPCSG, HNCIG, IAG-KHT, LPRHHT, NCIC CTG, NCRI, NRG Oncology, PHNS, SBRT, SOMERA, SRO, SSHNO, TROG consensus guidelines. Radiother Oncol. 2018;126(1):3–24.

    Article  PubMed  Google Scholar 

  67. Gregoire V, Grau C, Lapeyre M, Maingon P. Target volume selection and delineation (T and N) for primary radiation treatment of oral cavity, oropharyngeal, hypopharyngeal and laryngeal squamous cell carcinoma. Oral Oncol. 2018;87:131–7.

    Article  PubMed  Google Scholar 

  68. Machiels JP, Rene Leemans C, Golusinski W, Grau C, Licitra L, Gregoire V, et al. Squamous cell carcinoma of the oral cavity, larynx, oropharynx and hypopharynx: EHNS-ESMO-ESTRO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020;31(11):1462–75.

    Article  PubMed  Google Scholar 

  69. Brouwer CL, Steenbakkers RJ, Bourhis J, Budach W, Grau C, Gregoire V, et al. CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG oncology and TROG consensus guidelines. Radiother Oncol. 2015;117(1):83–90.

    Article  PubMed  Google Scholar 

  70. Cleeland CS, Mendoza TR, Wang XS, Chou C, Harle MT, Morrissey M, et al. Assessing symptom distress in cancer patients: the M.D. Anderson symptom inventory. Cancer. 2000;89(7):1634–46.

    Article  CAS  PubMed  Google Scholar 

  71. Lee AW, Ng WT, Pan JJ, Poh SS, Ahn YC, AlHussain H, et al. International guideline for the delineation of the clinical target volumes (CTV) for nasopharyngeal carcinoma. Radiother Oncol. 2018;126(1):25–36.

    Article  PubMed  Google Scholar 

  72. O’Sullivan B, Warde P, Grice B, Goh C, Payne D, Liu FF, et al. The benefits and pitfalls of ipsilateral radiotherapy in carcinoma of the tonsillar region. Int J Radiat Oncol Biol Phys. 2001;51(2):332–43.

    Article  PubMed  Google Scholar 

  73. Chronowski GM, Garden AS, Morrison WH, Frank SJ, Schwartz DL, Shah SJ, et al. Unilateral radiotherapy for the treatment of tonsil cancer. Int J Radiat Oncol Biol Phys. 2012;83(1):204–9.

    Article  PubMed  Google Scholar 

  74. Dan TD, Raben D, Schneider CJ, Hockstein NG, Witt RL, Dzeda M, et al. Freedom from local and regional failure of contralateral neck with ipsilateral neck radiotherapy for node-positive tonsil cancer: updated results of an institutional clinical management approach. Oral Oncol. 2015;51(6):616–21.

    Article  PubMed  Google Scholar 

  75. Kennedy WR, Herman MP, Deraniyagala RL, Amdur RJ, Werning JW, Dziegielewski PT, et al. Ipsilateral radiotherapy for squamous cell carcinoma of the tonsil. Eur Arch Otorhinolaryngol. 2016;273(8):2151–6.

    Article  PubMed  Google Scholar 

  76. Xue F, Hu C, He X. Induction chemotherapy followed by intensity-modulated radiotherapy with reduced gross tumor volume delineation for stage T3-4 nasopharyngeal carcinoma. Onco Targets Ther. 2017;10:3329–36.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Perillo A, Landoni V, Farneti A, Sanguineti G. Organ motion in linac-based SBRT for glottic cancer. Radiat Oncol. 2021;16(1):106.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kwa SL, Al-Mamgani A, Osman SO, Gangsaas A, Levendag PC, Heijmen BJ. Inter- and Intrafraction target motion in highly focused single vocal cord irradiation of T1a larynx cancer patients. Int J Radiat Oncol Biol Phys. 2015;93(1):190–5.

    Article  PubMed  Google Scholar 

  79. Navran A, Heemsbergen W, Janssen T, Hamming-Vrieze O, Jonker M, Zuur C, et al. The impact of margin reduction on outcome and toxicity in head and neck cancer patients treated with image-guided volumetric modulated arc therapy (VMAT). Radiother Oncol. 2019;130:25–31.

    Article  PubMed  Google Scholar 

  80. Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, et al. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S10–9.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–22.

    Article  CAS  PubMed  Google Scholar 

  82. Su W, Wright CM, Lee DY, Kim M, Anstadt EJ, Teo BK, et al. Stricter postoperative oropharyngeal cancer radiation therapy normal tissue dose constraints are feasible. Pract Radiat Oncol. 2022;12(4):e282–5.

    Article  PubMed  Google Scholar 

  83. Yock TI, Murphy B, Bass JK, Ronckers CM, Kremer L, Baliga S, et al. Modeling the risk of hearing loss from radiotherapy in childhood cancer survivors: initial results from the pediatric normal tissue effects in the clinic (PENTEC) hearing loss task force. Int J Radiat Oncol Biol Phys. 2019;105(1):S191.

    Article  Google Scholar 

  84. van Dijk LV, Abusaif AA, Rigert J, Naser MA, Hutcheson KA, Lai SY, et al. Normal tissue complication probability (NTCP) prediction model for osteoradionecrosis of the mandible in patients with head and neck cancer after radiation therapy: large-scale observational cohort. Int J Radiat Oncol Biol Phys. 2021;111(2):549–58.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kamal M, Peeler CR, Yepes P, Mohamed ASR, Blanchard P, Frank S, et al. Radiation-induced hypothyroidism after radical intensity modulated radiation therapy for oropharyngeal carcinoma. Adv Radiat Oncol. 2020;5(1):111–9.

    Article  PubMed  Google Scholar 

  86. Zhou L, Chen J, Shen W, Chen ZL, Huang S, Tao CJ, et al. Thyroid V(50) is a risk factor for hypothyroidism in patients with nasopharyngeal carcinoma treated with intensity-modulated radiation therapy: a retrospective study. Radiat Oncol. 2020;15(1):68.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Chen WC, Hsu CM, Tsai YT, Lin MH, Tsai MS, Chang GH, et al. Prospective evaluation of taste function in patients with head and neck cancer receiving intensity-modulated radiotherapy. JAMA Otolaryngol Head Neck Surg. 2022;148(7):604–11.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ouyang Z, Liu Shen Z, Murray E, Kolar M, LaHurd D, Yu N, et al. Evaluation of auto-planning in IMRT and VMAT for head and neck cancer. J Appl Clin Med Phys. 2019;20(7):39–47.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Chamberlain M, Krayenbuehl J, van Timmeren JE, Wilke L, Andratschke N, Garcia Schüler H, et al. Head and neck radiotherapy on the MR linac: a multicenter planning challenge amongst MRIdian platform users. Strahlenther Onkol. 2021;197(12):1093–103.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lacas B, Carmel A, Landais C, Wong SJ, Licitra L, Tobias JS, et al. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 107 randomized trials and 19,805 patients, on behalf of MACH-NC group. Radiother Oncol. 2021;156:281–93.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Soto DE, Kessler ML, Piert M, Eisbruch A. Correlation between pretreatment FDG-PET biological target volume and anatomical location of failure after radiation therapy for head and neck cancers. Radiother Oncol. 2008;89(1):13–8.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mohamed ASR, Cardenas CE, Garden AS, Awan MJ, Rock CD, Westergaard SA, et al. Patterns-of-failure guided biological target volume definition for head and neck cancer patients: FDG-PET and dosimetric analysis of dose escalation candidate subregions. Radiother Oncol. 2017;124(2):248–55.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Madani I, Duprez F, Boterberg T, Van de Wiele C, Bonte K, Deron P, et al. Maximum tolerated dose in a phase I trial on adaptive dose painting by numbers for head and neck cancer. Radiother Oncol. 2011;101(3):351–5.

    Article  PubMed  Google Scholar 

  94. Berwouts D, Madani I, Duprez F, Olteanu AL, Vercauteren T, Boterberg T, et al. Long-term outcome of (18) F-fluorodeoxyglucose-positron emission tomography-guided dose painting for head and neck cancer: matched case-control study. Head Neck. 2017;39(11):2264–75.

    Article  PubMed  Google Scholar 

  95. Heukelom J, Hamming O, Bartelink H, Hoebers F, Giralt J, Herlestam T, et al. Adaptive and innovative radiation treatment FOR improving cancer treatment outcomE (ARTFORCE); a randomized controlled phase II trial for individualized treatment of head and neck cancer. BMC Cancer. 2013;13:84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. van Dijk LV, Frank SJ, Yuan Y, Gunn B, Moreno AC, Mohamed ASR, et al. Proton image-guided radiation assignment for therapeutic escalation via selection of locally advanced head and neck cancer patients [PIRATES]: a phase I safety and feasibility trial of MRI-guided adaptive particle radiotherapy. Clin Transl Radiat Oncol. 2022;32:35–40.

    PubMed  Google Scholar 

  97. Mierzwa ML, Aryal M, Lee C, Schipper M, VanTil M, Morales K, et al. Randomized phase II study of physiologic MRI-directed adaptive radiation boost in poor prognosis head and neck cancer. Clin Cancer Res. 2022;28(23):5049–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang Y, Hong H, Cai W. PET tracers based on Zirconium-89. Curr Radiopharm. 2011;4(2):131–9.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Grosu AL, Souvatzoglou M, Roper B, Dobritz M, Wiedenmann N, Jacob V, et al. Hypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer. Int J Radiat Oncol Biol Phys. 2007;69(2):541–51.

    Article  CAS  PubMed  Google Scholar 

  100. Bittner MI, Wiedenmann N, Bucher S, Hentschel M, Mix M, Weber WA, et al. Exploratory geographical analysis of hypoxic subvolumes using 18F-MISO-PET imaging in patients with head and neck cancer in the course of primary chemoradiotherapy. Radiother Oncol. 2013;108(3):511–6.

    Article  PubMed  Google Scholar 

  101. Zschaeck S, Haase R, Abolmaali N, Perrin R, Stutzer K, Appold S, et al. Spatial distribution of FMISO in head and neck squamous cell carcinomas during radio-chemotherapy and its correlation to pattern of failure. Acta Oncol. 2015;54(9):1355–63.

    Article  CAS  PubMed  Google Scholar 

  102. Heukelom J, Fuller CD. Head and neck cancer adaptive radiation therapy (ART): conceptual considerations for the informed clinician. Semin Radiat Oncol. 2019;29(3):258–73.

    Article  PubMed  PubMed Central  Google Scholar 

  103. van den Bosch S, Dijkema T, Kunze-Busch MC, Terhaard CH, Raaijmakers CP, Doornaert PA, et al. Uniform FDG-PET guided GRAdient Dose prEscription to reduce late Radiation Toxicity (UPGRADE-RT): study protocol for a randomized clinical trial with dose reduction to the elective neck in head and neck squamous cell carcinoma. BMC Cancer. 2017;17(1):208.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Deschuymer S, Nevens D, Duprez F, Daisne JF, Dok R, Laenen A, et al. Randomized clinical trial on reduction of radiotherapy dose to the elective neck in head and neck squamous cell carcinoma; update of the long-term tumor outcome. Radiother Oncol. 2020;143:24–9.

    Article  CAS  PubMed  Google Scholar 

  105. Gabani P, Lin AJ, Barnes J, Oppelt P, Adkins DR, Rich JT, et al. Radiation therapy dose de-escalation compared to standard dose radiation therapy in definitive treatment of HPV-positive oropharyngeal squamous cell carcinoma. Radiother Oncol. 2019;134:81–8.

    Article  PubMed  Google Scholar 

  106. Winkel D, Bol GH, Kroon PS, van Asselen B, Hackett SS, Werensteijn-Honingh AM, et al. Adaptive radiotherapy: the Elekta Unity MR-linac concept. Clin Transl Radiat Oncol. 2019;18:54–9.

    PubMed  PubMed Central  Google Scholar 

  107. de Muinck Keizer DM, Kerkmeijer LGW, Willigenburg T, van Lier A, Hartogh MDD, van der Voort van Zyp JRN, et al. Prostate intrafraction motion during the preparation and delivery of MR-guided radiotherapy sessions on a 1.5T MR-Linac. Radiother Oncol. 2020;151:88–94.

    Article  PubMed  Google Scholar 

  108. Bruijnen T, Stemkens B, Terhaard CHJ, Lagendijk JJW, Raaijmakers CPJ, Tijssen RHN. Intrafraction motion quantification and planning target volume margin determination of head-and-neck tumors using cine magnetic resonance imaging. Radiother Oncol. 2019;130:82–8.

    Article  PubMed  Google Scholar 

  109. Kluter S. Technical design and concept of a 0.35 T MR-Linac. Clin Transl Radiat Oncol. 2019;18:98–101.

    PubMed  PubMed Central  Google Scholar 

  110. Green OL, Rankine LJ, Cai B, Curcuru A, Kashani R, Rodriguez V, et al. First clinical implementation of real-time, real anatomy tracking and radiation beam control. Med Phys. 2018;45:3728.

    Article  Google Scholar 

  111. Zhong Y, Yang Y, Fang Y, Wang J, Hu W. A preliminary experience of implementing deep-learning based auto-segmentation in head and neck cancer: a study on real-world clinical cases. Front Oncol. 2021;11:638197.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Nikolov S, Blackwell S, Zverovitch A, Mendes R, Livne M, De Fauw J, et al. Clinically applicable segmentation of head and neck anatomy for radiotherapy: deep learning algorithm development and validation study. J Med Internet Res. 2021;23(7):e26151.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Kieselmann JP, Kamerling CP, Burgos N, Menten MJ, Fuller CD, Nill S, et al. Geometric and dosimetric evaluations of atlas-based segmentation methods of MR images in the head and neck region. Phys Med Biol. 2018;63(14):145007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Korte JC, Hardcastle N, Ng SP, Clark B, Kron T, Jackson P. Cascaded deep learning-based auto-segmentation for head and neck cancer patients: organs at risk on T2-weighted magnetic resonance imaging. Med Phys. 2021;48(12):7757–72.

    Article  PubMed  Google Scholar 

  115. Chin AL, Lin A, Anamalayil S, Teo BK. Feasibility and limitations of bulk density assignment in MRI for head and neck IMRT treatment planning. J Appl Clin Med Phys. 2014;15(5):4851.

    Article  PubMed  Google Scholar 

  116. Karotki A, Mah K, Meijer G, Meltsner M. Comparison of bulk electron density and voxel-based electron density treatment planning. J Appl Clin Med Phys. 2011;12(4):3522.

    Article  PubMed  Google Scholar 

  117. Crijns SP, Kok JG, Lagendijk JJ, Raaymakers BW. Towards MRI-guided linear accelerator control: gating on an MRI accelerator. Phys Med Biol. 2011;56(15):4815–25.

    Article  CAS  PubMed  Google Scholar 

  118. Kontaxis C, Bol GH, Lagendijk JJ, Raaymakers BW. A new methodology for inter- and intrafraction plan adaptation for the MR-linac. Phys Med Biol. 2015;60(19):7485–97.

    Article  PubMed  Google Scholar 

  119. Zachiu C, Papadakis N, Ries M, Moonen C, Denis de Senneville B. An improved optical flow tracking technique for real-time MR-guided beam therapies in moving organs. Phys Med Biol. 2015;60(23):9003–29.

    Article  CAS  PubMed  Google Scholar 

  120. Willigenburg T, Zachiu C, Lagendijk JJW, van der Voort van Zyp JRN, de Boer HCJ, Raaymakers BW. Fast and accurate deformable contour propagation for intra-fraction adaptive magnetic resonance-guided prostate radiotherapy. Phys Imaging Radiat Oncol. 2022;21:62–5.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Uijtewaal P, Borman PTS, Woodhead PL, Kontaxis C, Hackett SL, Verhoeff J, et al. First experimental demonstration of VMAT combined with MLC tracking for single and multi fraction lung SBRT on an MR-linac. Radiother Oncol. 2022;174:149–57.

    Article  CAS  PubMed  Google Scholar 

  122. Yang J, Mohamed ASR, Bahig H, Ding Y, Wang J, Ng SP, et al. Automatic registration of 2D MR cine images for swallowing motion estimation. PLoS One. 2020;15(2):e0228652.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Bradley JA, Paulson ES, Ahunbay E, Schultz C, Li XA, Wang D. Dynamic MRI analysis of tumor and organ motion during rest and deglutition and margin assessment for radiotherapy of head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2011;81(5):e803–12.

    Article  PubMed  Google Scholar 

  124. Hoogcarspel SJ, Zijlema SE, Tijssen RHN, Kerkmeijer LGW, Jurgenliemk-Schulz IM, Lagendijk JJW, et al. Characterization of the first RF coil dedicated to 1.5 T MR guided radiotherapy. Phys Med Biol. 2018;63(2):025014.

    Article  PubMed  Google Scholar 

  125. Cuccia F, Alongi F, Belka C, Boldrini L, Hörner-Rieber J, McNair H, et al. Patient positioning and immobilization procedures for hybrid MR-Linac systems. Radiat Oncol. 2021;16(1):183.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Boeke S, Monnich D, van Timmeren JE, Balermpas P. MR-guided radiotherapy for head and neck cancer: current developments, perspectives, and challenges. Front Oncol. 2021;11:616156.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Chuter RW, Whitehurst P, Choudhury A, van Herk M, McWilliam A. Technical note: investigating the impact of field size on patient selection for the 1.5T MR-Linac. Med Phys. 2017;44(11):5667–71.

    Article  CAS  PubMed  Google Scholar 

  128. Ng-Cheng-Hin B, Nutting C, Newbold K, Bhide S, McQuaid D, Dunlop A, et al. The impact of restricted length of treatment field and anthropometric factors on selection of head and neck cancer patients for treatment on the MR-Linac. Br J Radiol. 2020;93(1111):20200023.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Monnich D, Winter J, Nachbar M, Kunzel L, Boeke S, Gani C, et al. Quality assurance of IMRT treatment plans for a 1.5 T MR-linac using a 2D ionization chamber array and a static solid phantom. Phys Med Biol. 2020;65(16):16NT01.

    Article  PubMed  Google Scholar 

  130. Strand S, Boczkowski A, Smith B, Snyder JE, Hyer DE, Yaddanapudi S, et al. Analysis of patient-specific quality assurance for Elekta Unity adaptive plans using statistical process control methodology. J Appl Clin Med Phys. 2021;22(4):99–107.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Kim A, Ruschin ME, McCann C, Au P, Singh A, Sahgal A, et al. Streamlining patient-specific quality assurance for the 1.5T MR-Linac using a classic statistics tool. Int J Radiat Oncol Biol Phys. 2020;108(3):e350–1.

    Article  Google Scholar 

  132. Rhatigan E, Tyrmpas I, Murray G, Plevris JN. Scoring system to identify patients at high risk of oesophageal cancer. Br J Surg. 2010;97(12):1831–7.

    Article  CAS  PubMed  Google Scholar 

  133. Crary MA, Mann GD, Groher ME. Initial psychometric assessment of a functional oral intake scale for dysphagia in stroke patients. Arch Phys Med Rehabil. 2005;86(8):1516–20.

    Article  PubMed  Google Scholar 

  134. Bakhtiyari J, Tohidast SA, Mansuri B, Azimi H, Ebadi A. The Persian version of the Functional Oral Intake Scale (FOIS-P): a validation study on stroke patients with dysphagia. Logoped Phoniatr Vocol. 2022;47(2):133–8.

    Article  PubMed  Google Scholar 

  135. Ninfa A, Pizzorni N, Eplite A, Moltisanti C, Schindler A. Validation of the Italian version of the Functional Oral Intake Scale (FOIS-It) against fiberoptic endoscopic evaluation of swallowing and nutritional status. Dysphagia. 2022;37(1):137–47.

    Article  PubMed  Google Scholar 

  136. Hamzic S, Braun T, Juenemann M, Butz M, Voswinckel R, Belly M, et al. Validation of the German version of Functional Oral Intake Scale (FOIS-G) for flexible endoscopic evaluation of swallowing (FEES). Dysphagia. 2021;36(1):130–9.

    Article  PubMed  Google Scholar 

  137. Bjordal K, Hammerlid E, Ahlner-Elmqvist M, de Graeff A, Boysen M, Evensen JF, et al. Quality of life in head and neck cancer patients: validation of the European Organization for Research and Treatment of cancer quality of life questionnaire-H&N35. J Clin Oncol. 1999;17(3):1008–19.

    Article  CAS  PubMed  Google Scholar 

  138. Kaasa S, Bjordal K, Aaronson N, Moum T, Wist E, Hagen S, et al. The EORTC core quality of life questionnaire (QLQ-C30): validity and reliability when analysed with patients treated with palliative radiotherapy. Eur J Cancer. 1995;31A(13–14):2260–3.

    Article  CAS  PubMed  Google Scholar 

  139. List MA, D’Antonio LL, Cella DF, Siston A, Mumby P, Haraf D, et al. The performance status scale for head and neck cancer patients and the functional assessment of cancer therapy-head and neck scale. A study of utility and validity. Cancer. 1996;77(11):2294–301.

    Article  CAS  PubMed  Google Scholar 

  140. Chen AY, Frankowski R, Bishop-Leone J, Hebert T, Leyk S, Lewin J, et al. The development and validation of a dysphagia-specific quality-of-life questionnaire for patients with head and neck cancer: the M. D. Anderson dysphagia inventory. Arch Otolaryngol Head Neck Surg. 2001;127(7):870–6.

    CAS  PubMed  Google Scholar 

  141. Rosen CA, Lee AS, Osborne J, Zullo T, Murry T. Development and validation of the voice handicap index-10. Laryngoscope. 2004;114(9):1549–56.

    Article  PubMed  Google Scholar 

  142. Kaae JK, Johnsen L, Hansen CR, Kristensen MH, Brink C, Eriksen JG. Relationship between patient and physician-rated xerostomia and dose distribution to the oral cavity and salivary glands for head and neck cancer patients after radiotherapy. Acta Oncol. 2019;58(10):1366–72.

    Article  CAS  PubMed  Google Scholar 

  143. Mohamed AS, Rosenthal DI, Awan MJ, Garden AS, Kocak-Uzel E, Belal AM, et al. Methodology for analysis and reporting patterns of failure in the era of IMRT: head and neck cancer applications. Radiat Oncol. 2016;11(1):95.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Resteghini C, Trama A, Borgonovi E, Hosni H, Corrao G, Orlandi E, et al. Big data in head and neck cancer. Curr Treat Options Oncol. 2018;19(12):62.

    Article  PubMed  Google Scholar 

  145. Van den Bosch L, van der Schaaf A, van der Laan HP, Hoebers FJP, Wijers OB, van den Hoek JGM, et al. Comprehensive toxicity risk profiling in radiation therapy for head and neck cancer: a new concept for individually optimised treatment. Radiother Oncol. 2021;157:147–54.

    Article  PubMed  Google Scholar 

  146. Langendijk JA, Hoebers FJP, de Jong MA, Doornaert P, Terhaard CHJ, Steenbakkers R, et al. National protocol for model-based selection for proton therapy in head and neck cancer. Int J Part Ther. 2021;8(1):354–65.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Lewis BC, Shin J, Maraghechi B, Quinn B, Cole M, Barberi E, et al. Assessment of a novel commercial large field of view phantom for comprehensive MR imaging quality assurance of a 0.35T MRgRT system. J Appl Clin Med Phys. 2022;23(4):e13535.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Ng SP, Cardenas CE, Bahig H, Elgohari B, Wang J, Johnson JM, et al. Changes in apparent diffusion coefficient (ADC) in serial weekly MRI during radiotherapy in patients with head and neck cancer: results from the PREDICT-HN study. Curr Oncol. 2022;29(9):6303–13.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Anderson CM, Sun W, Buatti JM, Maley JE, Policeni B, Mott SL, et al. Interobserver and intermodality variability in GTV delineation on simulation CT, FDG-PET, and MR images of head and neck cancer. Jacobs J Radiat Oncol. 2014;1(1):006.

    PubMed  PubMed Central  Google Scholar 

  150. Li X, Yadav P, McMillan AB. Synthetic computed tomography generation from 0.35T magnetic resonance images for magnetic resonance-only radiation therapy planning using perceptual loss models. Pract Radiat Oncol. 2022;12(1):e40–8.

    Article  PubMed  Google Scholar 

  151. Morgan HE, Sher DJ. Adaptive radiotherapy for head and neck cancer. Cancers Head Neck. 2020;5:1.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Ahn PH, Chen CC, Ahn AI, Hong L, Scripes PG, Shen J, et al. Adaptive planning in intensity-modulated radiation therapy for head and neck cancers: single-institution experience and clinical implications. Int J Radiat Oncol Biol Phys. 2011;80(3):677–85.

    Article  PubMed  Google Scholar 

  153. Oktay O, Nanavati J, Schwaighofer A, Carter D, Bristow M, Tanno R, et al. Evaluation of deep learning to augment image-guided radiotherapy for head and neck and prostate cancers. JAMA Netw Open. 2020;3(11):e2027426.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Neubauer E, Dong L, Followill DS, Garden AS, Court LE, White RA, et al. Assessment of shoulder position variation and its impact on IMRT and VMAT doses for head and neck cancer. Radiat Oncol. 2012;7:19.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clifton D. Fuller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khriguian, J., Gharzai, L., Heukelom, J., McDonald, B., Fuller, C.D. (2024). Treatment of Head and Neck Cancers with MR-Linac. In: Das, I.J., Alongi, F., Yadav, P., Mittal, B.B. (eds) A Practical Guide to MR-Linac. Springer, Cham. https://doi.org/10.1007/978-3-031-48165-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48165-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48164-2

  • Online ISBN: 978-3-031-48165-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics