Skip to main content

MR-Linac-Guided Adaptive Radiotherapy for Brain Tumors

  • Chapter
  • First Online:
A Practical Guide to MR-Linac
  • 127 Accesses

Abstract

Over the past decade, the integration of magnetic resonance imaging (MRI) technologies into the brain radiotherapy workflow has rapidly expanded, due to increased availability and access to diagnostic and dedicated radiotherapy simulation MRI scanners. In addition to providing anatomic visualization during treatment planning, advanced MRI sequences, such as diffusion and perfusion, can be applied to investigate the physiology and metabolism of CNS tumors. Magnetic resonance-guided radiation therapy (MRgRT) provides a unique advantage by allowing daily visualization of tumors both during treatment (intrafraction) and between treatments (interfraction). This unlocks the potential to use real-time information during the treatment course to potentially affect patient outcomes. The focus of this chapter is to review the potential applications of MRgRT for brain tumors, highlighting the advantages of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lah TT, Novak M, Breznik B. Brain malignancies: glioblastoma and brain metastases. Semin Cancer Biol. 2020;60:262–73.

    Article  CAS  PubMed  Google Scholar 

  2. Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015-2019. Neuro Oncol. 2022;24(Suppl 5):v1–v95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sacks P, Rahman M. Epidemiology of brain metastases. Neurosurg Clin N Am. 2020;31(4):481–8.

    Article  PubMed  Google Scholar 

  4. Seker-Polat F, Pinarbasi Degirmenci N, Solaroglu I, Bagci-Onder T. Tumor cell infiltration into the brain in glioblastoma: from mechanisms to clinical perspectives. Cancers. 2022;14(2):443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bell EH, Pugh SL, McElroy JP, Gilbert MR, Mehta M, Klimowicz AC, et al. Molecular-based recursive partitioning analysis model for glioblastoma in the Temozolomide era: a correlative analysis based on NRG oncology RTOG 0525. JAMA Oncol. 2017;3(6):784–92.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66.

    Article  CAS  PubMed  Google Scholar 

  7. Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B, et al. Effect of tumor-treating fields plus maintenance Temozolomide vs maintenance Temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA. 2017;318(23):2306–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  CAS  PubMed  Google Scholar 

  9. Roa W, Brasher PM, Bauman G, Anthes M, Bruera E, Chan A, et al. Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: a prospective randomized clinical trial. J Clin Oncol. 2004;22(9):1583–8.

    Article  CAS  PubMed  Google Scholar 

  10. Malmström A, Grønberg BH, Marosi C, Stupp R, Frappaz D, Schultz H, et al. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol. 2012;13(9):916–26.

    Article  PubMed  Google Scholar 

  11. Roa W, Kepka L, Kumar N, Sinaika V, Matiello J, Lomidze D, et al. International Atomic Energy Agency randomized phase III study of radiation therapy in elderly and/or frail patients with newly diagnosed glioblastoma multiforme. J Clin Oncol. 2015;33(35):4145–50.

    Article  PubMed  Google Scholar 

  12. Kotecha R, Gondi V, Ahluwalia MS, Brastianos PK, Mehta MP. Recent advances in managing brain metastasis. F1000Res. 2018;7:F1000 Faculty Rev-1772.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Suh JH, Kotecha R, Chao ST, Ahluwalia MS, Sahgal A, Chang EL. Current approaches to the management of brain metastases. Nat Rev Clin Oncol. 2020;17(5):279–99.

    Article  PubMed  Google Scholar 

  14. Vogelbaum MA, Brown PD, Messersmith H, Brastianos PK, Burri S, Cahill D, et al. Treatment for brain metastases: ASCO-SNO-ASTRO guideline. J Clin Oncol. 2022;40(5):492–516.

    Article  CAS  PubMed  Google Scholar 

  15. Gondi V, Bauman G, Bradfield L, Burri SH, Cabrera AR, Cunningham DA, et al. Radiation therapy for brain metastases: an ASTRO clinical practice guideline. Pract Radiat Oncol. 2022;12(4):265–82.

    Article  PubMed  Google Scholar 

  16. Chang EL, Wefel JS, Hess KR, Allen PK, Lang FF, Kornguth DG, et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol. 2009;10(11):1037–44.

    Article  PubMed  Google Scholar 

  17. Aoyama H, Shirato H, Tago M, Nakagawa K, Toyoda T, Hatano K, et al. Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA. 2006;295(21):2483–91.

    Article  CAS  PubMed  Google Scholar 

  18. Shinde A, Akhavan D, Sedrak M, Glaser S, Amini A. Shifting paradigms: whole brain radiation therapy versus stereotactic radiosurgery for brain metastases. CNS. CNS Oncol. 2019;8(1):CNS27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kocher M, Soffietti R, Abacioglu U, Villa S, Fauchon F, Baumert BG, et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. J Clin Oncol. 2011;29(2):134–41.

    Article  PubMed  Google Scholar 

  20. Shaw E, Scott C, Souhami L, Dinapoli R, Kline R, Loeffler J, et al. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int J Radiat Oncol Biol Phys. 2000;47(2):291–8.

    Article  CAS  PubMed  Google Scholar 

  21. Masucci GL. Hypofractionated radiation therapy for large brain metastases. Front Oncol. 2018;8:379.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Prabhu RS, Dhakal R, Vaslow ZK, Dan T, Mishra MV, Murphy ES, et al. Preoperative radiosurgery for resected brain metastases: the PROPS-BM multicenter cohort study. Int J Radiat Oncol Biol Phys. 2021;111(3):764–72.

    Article  PubMed  Google Scholar 

  23. Mahajan A, Ahmed S, McAleer MF, Weinberg JS, Li J, Brown P, et al. Post-operative stereotactic radiosurgery versus observation for completely resected brain metastases: a single-centre, randomised, controlled, phase 3 trial. Lancet Oncol. 2017;18(8):1040–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11(2):102–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ellingson BM, Malkin MG, Rand SD, Connelly JM, Quinsey C, LaViolette PS, et al. Validation of functional diffusion maps (fDMs) as a biomarker for human glioma cellularity. J Magn Reson Imaging. 2010;31(3):538–48.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hein PA, Eskey CJ, Dunn JF, Hug EB. Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol. 2004;25(2):201–9.

    PubMed  PubMed Central  Google Scholar 

  27. Hamstra DA, Rehemtulla A, Ross BD. Diffusion magnetic resonance imaging: a biomarker for treatment response in oncology. J Clin Oncol. 2007;25(26):4104–9.

    Article  PubMed  Google Scholar 

  28. Jabehdar Maralani P, Myrehaug S, Mehrabian H, Chan AKM, Wintermark M, Heyn C, et al. Intravoxel incoherent motion (IVIM) modeling of diffusion MRI during chemoradiation predicts therapeutic response in IDH wildtype glioblastoma. Radiother Oncol. 2021;156:258–65.

    Article  PubMed  Google Scholar 

  29. Larsson C, Groote I, Vardal J, Kleppesto M, Odland A, Brandal P, et al. Prediction of survival and progression in glioblastoma patients using temporal perfusion changes during radiochemotherapy. Magn Reson Imaging. 2020;68:106–12.

    Article  CAS  PubMed  Google Scholar 

  30. Pirzkall A, McKnight TR, Graves EE, Carol MP, Sneed PK, Wara WW, et al. MR-spectroscopy guided target delineation for high-grade gliomas. Int J Radiat Oncol Biol Phys. 2001;50(4):915–28.

    Article  CAS  PubMed  Google Scholar 

  31. Mehrabian H, Chan RW, Sahgal A, Chen H, Theriault A, Lam WW, et al. Chemical exchange saturation transfer MRI for differentiating radiation necrosis from tumor progression in brain metastasis-application in a clinical setting. J Magn Reson Imaging. 2022;57(6):1713–25.

    Article  PubMed  Google Scholar 

  32. Chan RW, Lawrence LSP, Oglesby RT, Chen H, Stewart J, Theriault A, et al. Chemical exchange saturation transfer MRI in central nervous system tumours on a 1.5 T MR-Linac. Radiother Oncol. 2021;162:140–9.

    Article  CAS  PubMed  Google Scholar 

  33. Maralani PJ, Myrehaug S, Mehrabian H, Chan AK, Wintermark M, Heyn C, et al. ADC, D, f dataset calculated through the simplified IVIM model, with MGMT promoter methylation, age, and ECOG, in 38 patients with wildtype IDH glioblastoma. Data Brief. 2021;35:106950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chan RW, Chen H, Myrehaug S, Atenafu EG, Stanisz GJ, Stewart J, et al. Quantitative CEST and MT at 1.5T for monitoring treatment response in glioblastoma: early and late tumor progression during chemoradiation. J Neurooncol. 2021;151(2):267–78.

    Article  CAS  PubMed  Google Scholar 

  35. Karami E, Soliman H, Ruschin M, Sahgal A, Myrehaug S, Tseng CL, et al. Quantitative MRI biomarkers of stereotactic radiotherapy outcome in brain metastasis. Sci Rep. 2019;9(1):19830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mehrabian H, Detsky J, Soliman H, Sahgal A, Stanisz GJ. Advanced magnetic resonance imaging techniques in management of brain metastases. Front Oncol. 2019;9:440.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kim MM, Sun Y, Aryal MP, Parmar HA, Piert M, Rosen B, et al. A phase 2 study of dose-intensified chemoradiation using biologically based target volume definition in patients with newly diagnosed glioblastoma. Int J Radiat Oncol Biol Phys. 2021;110(3):792–803.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chuong MD, Bryant J, Mittauer KE, Hall M, Kotecha R, Alvarez D, et al. Ablative 5-fraction stereotactic magnetic resonance-guided radiation therapy with on-table adaptive replanning and elective nodal irradiation for inoperable pancreas cancer. Pract Radiat Oncol. 2021;11(2):134–47.

    Article  PubMed  Google Scholar 

  39. Kutuk T, Herrera R, Mustafayev TZ, Gungor G, Ugurluer G, Atalar B, et al. Multi-institutional outcomes of stereotactic magnetic resonance image guided adaptive radiation therapy with a median biologically effective dose of 100 Gy(10) for non-bone oligometastases. Adv Radiat Oncol. 2022;7(6):100978.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kutuk T, McCulloch J, Mittauer KE, Romaguera T, Alvarez D, Gutierrez AN, et al. Daily online adaptive magnetic resonance image (MRI) guided stereotactic body radiation therapy for primary renal cell cancer. Med Dosim. 2021;46(3):289–94.

    Article  PubMed  Google Scholar 

  41. Ugurluer G, Mustafayev TZ, Gungor G, Atalar B, Abacioglu U, Sengoz M, et al. Stereotactic MR-guided online adaptive radiation therapy (SMART) for the treatment of liver metastases in oligometastatic patients: initial clinical experience. Radiat Oncol J. 2021;39(1):33–40.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cao Y, Tseng CL, Balter JM, Teng F, Parmar HA, Sahgal A. MR-guided radiation therapy: transformative technology and its role in the central nervous system. Neuro Oncol. 2017;19(suppl_2):ii16–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maziero D, Straza MW, Ford JC, Bovi JA, Diwanji T, Stoyanova R, et al. MR-guided radiotherapy for brain and spine tumors. Front Oncol. 2021;11:626100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stewart J, Sahgal A, Lee Y, Soliman H, Tseng CL, Detsky J, et al. Quantitating interfraction target dynamics during concurrent chemoradiation for glioblastoma: a prospective serial imaging study. Int J Radiat Oncol Biol Phys. 2021;109(3):736–46.

    Article  PubMed  Google Scholar 

  45. Mesny E, Jacob J, Culot F, Calugaru V, Jenny C, Fonti B, et al. Optic nerve motion and gaze direction: their impact on intraorbital tumor radiotherapy. Cancer Radiother. 2022;26(5):678–83.

    Article  PubMed  Google Scholar 

  46. Qing K, Nie K, Liu B, Feng X, Stone JR, Cui T, et al. The impact of optic nerve movement on intracranial radiation treatment. Front Oncol. 2022;12:803329.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Liney GP, Whelan B, Oborn B, Barton M, Keall P. MRI-linear accelerator radiotherapy systems. Clin Oncol (R Coll Radiol). 2018;30(11):686–91.

    Article  CAS  PubMed  Google Scholar 

  48. Bonert M, Schneider M, Solyanik O, Hellbach K, Bondesson D, Gaass T, et al. Diagnostic accuracy of magnetic resonance imaging for the detection of pulmonary nodules simulated in a dedicated porcine chest phantom. PLoS One. 2020;15(12):e0244382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kluter S. Technical design and concept of a 0.35 T MR-Linac. Clin Transl Radiat Oncol. 2019;18:98–101.

    PubMed  PubMed Central  Google Scholar 

  50. Dajani S, Hill VB, Kalapurakal JA, Horbinski CM, Nesbit EG, Sachdev S, et al. Imaging of GBM in the age of molecular markers and MRI guided adaptive radiation therapy. J Clin Med. 2022;11(19):5961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang TY, Huang IJ, Chen CY, Scheffler K, Chung HW, Cheng HC. Are TrueFISP images T2/T1-weighted? Magn Reson Med. 2002;48(4):684–8.

    Article  PubMed  Google Scholar 

  52. Schmitt P, Griswold MA, Jakob PM, Kotas M, Gulani V, Flentje M, et al. Inversion recovery TrueFISP: quantification of T(1), T(2), and spin density. Magn Reson Med. 2004;51(4):661–7.

    Article  PubMed  Google Scholar 

  53. Manon R, Hui S, Chinnaiyan P, Suh J, Chang E, Timmerman R, et al. The impact of mid-treatment MRI on defining boost volumes in the radiation treatment of glioblastoma multiforme. Technol Cancer Res Treat. 2004;3(3):303–7.

    Article  PubMed  Google Scholar 

  54. Tsien C, Gomez-Hassan D, Ten Haken RK, Tatro D, Junck L, Chenevert TL, et al. Evaluating changes in tumor volume using magnetic resonance imaging during the course of radiotherapy treatment of high-grade gliomas: implications for conformal dose-escalation studies. Int J Radiat Oncol Biol Phys. 2005;62(2):328–32.

    Article  PubMed  Google Scholar 

  55. Mehta S, Gajjar SR, Padgett KR, Asher D, Stoyanova R, Ford JC, et al. Daily tracking of glioblastoma resection cavity, cerebral edema, and tumor volume with MRI-guided radiation therapy. Cureus. 2018;10(3):e2346.

    PubMed  PubMed Central  Google Scholar 

  56. La Rosa A, Mittauer KE, Rzepczynski AE, Chuong MD, Kutuk T, Bassiri N, et al. Treatment of glioblastoma using MRIdian(R) A3i BrainTx: imaging and treatment workflow demonstration. Med Dosim. 2023;48(3):127–33.

    Article  PubMed  Google Scholar 

  57. Kolton K Jones SD, Maziero D, et al. MRI-guided radiotherapy identifies early pseudoprogression of glioblastoma. Preprint (Version 1) available at Research Square 2020.

    Google Scholar 

  58. Tsien C, Galbán CJ, Chenevert TL, Johnson TD, Hamstra DA, Sundgren PC, et al. Parametric response map as an imaging biomarker to distinguish progression from pseudoprogression in high-grade glioma. J Clin Oncol. 2010;28(13):2293–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang Y, Cao M, Sheng K, Gao Y, Chen A, Kamrava M, et al. Longitudinal diffusion MRI for treatment response assessment: preliminary experience using an MRI-guided tri-cobalt 60 radiotherapy system. Med Phys. 2016;43(3):1369–73.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Salkeld AL, Hau EKC, Nahar N, Sykes JR, Wang W, Thwaites DI. Changes in brain metastasis during radiosurgical planning. Int J Radiat Oncol Biol Phys. 2018;102(4):727–33.

    Article  PubMed  Google Scholar 

  61. Kutuk T, Tolakanahalli R, Williams A, Tom MC, Vadhan JD, Appel H, et al. Impact of MRI timing on tumor volume and anatomic displacement for brain metastases undergoing stereotactic radiosurgery. Neurooncol Pract. 2021;8(6):674–83.

    PubMed  PubMed Central  Google Scholar 

  62. Atalar B, Choi CY, Harsh GR 4th, Chang SD, Gibbs IC, Adler JR, et al. Cavity volume dynamics after resection of brain metastases and timing of postresection cavity stereotactic radiosurgery. Neurosurgery. 2013;72(2):180–5; discussion 5.

    Article  PubMed  Google Scholar 

  63. Taunk NK, Oh JH, Shukla-Dave A, Beal K, Vachha B, Holodny A, et al. Early posttreatment assessment of MRI perfusion biomarkers can predict long-term response of lung cancer brain metastases to stereotactic radiosurgery. Neuro Oncol. 2018;20(4):567–75.

    Article  CAS  PubMed  Google Scholar 

  64. Jakubovic R, Sahgal A, Soliman H, Milwid R, Zhang L, Eilaghi A, et al. Magnetic resonance imaging-based tumour perfusion parameters are biomarkers predicting response after radiation to brain metastases. Clin Oncol (R Coll Radiol). 2014;26(11):704–12.

    Article  CAS  PubMed  Google Scholar 

  65. Tan H, Stewart J, Ruschin M, Wang MH, Myrehaug S, Tseng CL, et al. Inter-fraction dynamics during post-operative 5 fraction cavity hypofractionated stereotactic radiotherapy with a MR LINAC: a prospective serial imaging study. J Neurooncol. 2022;156(3):569–77.

    Article  CAS  PubMed  Google Scholar 

  66. Tseng CL, Eppinga W, Seravalli E, Hackett S, Brand E, Ruschin M, et al. Dosimetric feasibility of the hybrid magnetic resonance imaging (MRI)-linac system (MRL) for brain metastases: the impact of the magnetic field. Radiother Oncol. 2017;125(2):273–9.

    Article  PubMed  Google Scholar 

  67. Wen N, Kim J, Doemer A, Glide-Hurst C, Chetty IJ, Liu C, et al. Evaluation of a magnetic resonance guided linear accelerator for stereotactic radiosurgery treatment. Radiother Oncol. 2018;127(3):460–6.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Choi CY, Chang SD, Gibbs IC, Adler JR, Harsh GR 4th, Lieberson RE, et al. Stereotactic radiosurgery of the postoperative resection cavity for brain metastases: prospective evaluation of target margin on tumor control. Int J Radiat Oncol Biol Phys. 2012;84(2):336–42.

    Article  PubMed  Google Scholar 

  69. Kutuk T, Kotecha R, Tolakanahalli R, Wieczorek DJJ, Lee YC, Ahluwalia MS, et al. Zero setup margin mask versus frame immobilization during gamma knife((R)) icon stereotactic radiosurgery for brain metastases. Cancers (Basel). 2022;14(14):3392.

    Article  PubMed  Google Scholar 

  70. Ruschin M, Sahgal A, Tseng CL, Sonier M, Keller B, Lee Y. Dosimetric impact of using a virtual couch shift for online correction of setup errors for brain patients on an integrated high-field magnetic resonance imaging linear accelerator. Int J Radiat Oncol Biol Phys. 2017;98(3):699–708.

    Article  PubMed  Google Scholar 

  71. Fabian D, Guillermo Prieto Eibl MDP, Alnahhas I, Sebastian N, Giglio P, Puduvalli V, et al. Treatment of glioblastoma (GBM) with the addition of tumor-treating fields (TTF): a review. Cancers (Basel). 2019;11(2):174.

    Article  CAS  PubMed  Google Scholar 

  72. Kotecha R, Odia Y, Khosla AA, Ahluwalia MS. Key clinical principles in the management of glioblastoma. JCO Oncol Pract. 2023;19:180–9.

    Article  PubMed  Google Scholar 

  73. Tseng CL, Stewart J, Whitfield G, Verhoeff JJC, Bovi J, Soliman H, et al. Glioma consensus contouring recommendations from a MR-Linac International Consortium Research Group and evaluation of a CT-MRI and MRI-only workflow. J Neurooncol. 2020;149(2):305–14.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Chan JL, Lee SW, Fraass BA, Normolle DP, Greenberg HS, Junck LR, et al. Survival and failure patterns of high-grade gliomas after three-dimensional conformal radiotherapy. J Clin Oncol. 2002;20(6):1635–42.

    Article  PubMed  Google Scholar 

  75. Milano MT, Okunieff P, Donatello RS, Mohile NA, Sul J, Walter KA, et al. Patterns and timing of recurrence after temozolomide-based chemoradiation for glioblastoma. Int J Radiat Oncol Biol Phys. 2010;78(4):1147–55.

    Article  CAS  PubMed  Google Scholar 

  76. Mallick S, Kunhiparambath H, Gupta S, Benson R, Sharma S, Laviraj MA, et al. Hypofractionated accelerated radiotherapy (HART) with concurrent and adjuvant temozolomide in newly diagnosed glioblastoma: a phase II randomized trial (HART-GBM trial). J Neurooncol. 2018;140(1):75–82.

    Article  CAS  PubMed  Google Scholar 

  77. Nelson DF, Diener-West M, Horton J, Chang CH, Schoenfeld D, Nelson JS. Combined modality approach to treatment of malignant gliomas—re-evaluation of RTOG 7401/ECOG 1374 with long-term follow-up: a joint study of the Radiation Therapy Oncology Group and the Eastern Cooperative Oncology Group. NCI Monogr. 1988;6:279–84.

    Google Scholar 

  78. Singh R, Lehrer EJ, Wang M, Perlow HK, Zaorsky NG, Trifiletti DM, et al. Dose escalated radiation therapy for glioblastoma multiforme: an international systematic review and meta-analysis of 22 prospective trials. Int J Radiat Oncol Biol Phys. 2021;111(2):371–84.

    Article  PubMed  Google Scholar 

  79. Tsien CI, Brown D, Normolle D, Schipper M, Piert M, Junck L, et al. Concurrent temozolomide and dose-escalated intensity-modulated radiation therapy in newly diagnosed glioblastoma. Clin Cancer Res. 2012;18(1):273–9.

    Article  CAS  PubMed  Google Scholar 

  80. Tanaka M, Ino Y, Nakagawa K, Tago M, Todo T. High-dose conformal radiotherapy for supratentorial malignant glioma: a historical comparison. Lancet Oncol. 2005;6(12):953–60.

    Article  PubMed  Google Scholar 

  81. Nakagawa K, Aoki Y, Fujimaki T, Tago M, Terahara A, Karasawa K, et al. High-dose conformal radiotherapy influenced the pattern of failure but did not improve survival in glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 1998;40(5):1141–9.

    Article  CAS  PubMed  Google Scholar 

  82. Gondi V, Pugh S, Tsien C, Chenevert T, Gilbert M, Omuro A, et al. Radiotherapy (RT) dose-intensification (DI) using intensity-modulated RT (IMRT) versus standard-dose (SD) RT with Temozolomide (TMZ) in newly diagnosed glioblastoma (GBM): preliminary results of NRG oncology BN001. Int J Radiat Oncol Biol Phys. 2020;108(3):S22–3.

    Article  Google Scholar 

  83. Nelson SJ, Vigneron DB, Dillon WP. Serial evaluation of patients with brain tumors using volume MRI and 3D 1H MRSI. NMR Biomed. 1999;12(3):123–38.

    Article  CAS  PubMed  Google Scholar 

  84. Narayana A, Chang J, Thakur S, Huang W, Karimi S, Hou B, et al. Use of MR spectroscopy and functional imaging in the treatment planning of gliomas. Br J Radiol. 2007;80(953):347–54.

    Article  CAS  PubMed  Google Scholar 

  85. Pirzkall A, Li X, Oh J, Chang S, Berger MS, Larson DA, et al. 3D MRSI for resected high-grade gliomas before RT: tumor extent according to metabolic activity in relation to MRI. Int J Radiat Oncol Biol Phys. 2004;59(1):126–37.

    Article  PubMed  Google Scholar 

  86. Chang J, Thakur SB, Huang W, Narayana A. Magnetic resonance spectroscopy imaging (MRSI) and brain functional magnetic resonance imaging (fMRI) for radiotherapy treatment planning of glioma. Technol Cancer Res Treat. 2008;7(5):349–62.

    CAS  PubMed  Google Scholar 

  87. Parra NA, Maudsley AA, Gupta RK, Ishkanian F, Huang K, Walker GR, et al. Volumetric spectroscopic imaging of glioblastoma multiforme radiation treatment volumes. Int J Radiat Oncol Biol Phys. 2014;90(2):376–84.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Laprie A, Ken S, Filleron T, Lubrano V, Vieillevigne L, Tensaouti F, et al. Dose-painting multicenter phase III trial in newly diagnosed glioblastoma: the SPECTRO-GLIO trial comparing arm A standard radiochemotherapy to arm B radiochemotherapy with simultaneous integrated boost guided by MR spectroscopic imaging. BMC Cancer. 2019;19(1):167.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ramesh K, Mellon EA, Gurbani SS, Weinberg BD, Schreibmann E, Sheriff SA, et al. A multi-institutional pilot clinical trial of spectroscopic MRI-guided radiation dose escalation for newly diagnosed glioblastoma. Neurooncol Adv. 2022;4(1):vdac006.

    PubMed  PubMed Central  Google Scholar 

  90. Singh K, Saxena S, Khosla AA, McDermott MW, Kotecha RR, Ahluwalia MS. Update on the management of brain metastasis. Neurotherapeutics. 2022;19(6):1772–81.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Mohammadi AM, Schroeder JL, Angelov L, Chao ST, Murphy ES, Yu JS, et al. Impact of the radiosurgery prescription dose on the local control of small (2 cm or smaller) brain metastases. J Neurosurg. 2017;126(3):735–43.

    Article  PubMed  Google Scholar 

  92. Baliga S, Garg MK, Fox J, Kalnicki S, Lasala PA, Welch MR, et al. Fractionated stereotactic radiation therapy for brain metastases: a systematic review with tumour control probability modelling. Br J Radiol. 2017;90(1070):20160666.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kim KH, Kong DS, Cho KR, Lee MH, Choi JW, Seol HJ, et al. Outcome evaluation of patients treated with fractionated gamma knife radiosurgery for large (>3 cm) brain metastases: a dose-escalation study. J Neurosurg. 2019:1–10.

    Google Scholar 

  94. Brown PD, Ballman KV, Cerhan JH, Anderson SK, Carrero XW, Whitton AC, et al. Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC.3): a multicentre, randomised, controlled, phase 3 trial. Lancet Oncol. 2017;18(8):1049–60.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Brennan C, Yang TJ, Hilden P, Zhang Z, Chan K, Yamada Y, et al. A phase 2 trial of stereotactic radiosurgery boost after surgical resection for brain metastases. Int J Radiat Oncol Biol Phys. 2014;88(1):130–6.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Minniti G, Niyazi M, Andratschke N, Guckenberger M, Palmer JD, Shih HA, et al. Current status and recent advances in resection cavity irradiation of brain metastases. Radiat Oncol. 2021;16(1):73.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Redmond KJ, De Salles AAF, Fariselli L, Levivier M, Ma L, Paddick I, et al. Stereotactic radiosurgery for postoperative metastatic surgical cavities: a critical review and international stereotactic radiosurgery society (ISRS) practice guidelines. Int J Radiat Oncol Biol Phys. 2021;111(1):68–80.

    Article  PubMed  Google Scholar 

  98. Li HH, Rodriguez VL, Green OL, Hu Y, Kashani R, Wooten HO, et al. Patient-specific quality assurance for the delivery of (60)Co intensity modulated radiation therapy subject to a 0.35-T lateral magnetic field. Int J Radiat Oncol Biol Phys. 2015;91(1):65–72.

    Article  CAS  PubMed  Google Scholar 

  99. Tseng CL, Chen H, Stewart J, Lau AZ, Chan RW, Lawrence LSP, et al. High grade glioma radiation therapy on a high field 1.5 Tesla MR-Linac—workflow and initial experience with daily adapt-to-position (ATP) MR guidance: a first report. Front Oncol. 2022;12:1060098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupesh Kotecha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kutuk, T., Detsky, J., Sahgal, A., Kotecha, R. (2024). MR-Linac-Guided Adaptive Radiotherapy for Brain Tumors. In: Das, I.J., Alongi, F., Yadav, P., Mittal, B.B. (eds) A Practical Guide to MR-Linac. Springer, Cham. https://doi.org/10.1007/978-3-031-48165-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48165-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48164-2

  • Online ISBN: 978-3-031-48165-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics