Skip to main content

MR-Guided Radiotherapy in the Pediatric and Adolescent Patient

  • Chapter
  • First Online:
A Practical Guide to MR-Linac

Abstract

Pediatric cancers comprise a heterogeneous group of tumors that can arise anywhere in the body and require specialized care. Pediatric radiation oncologists are taxed with the job of selecting the appropriate treatment for each patient based on the patient’s age, diagnosis, and prognosis, as well as socioeconomic factors that may come into play for families with young children. The use of magnetic-resonance (MR)-guided radiotherapy has revolutionized treatment for many adult cancers. Its application in the pediatric and adolescent population can provide significant benefits in a variety of clinical scenarios. In this chapter, we will explore common pediatric cancer diagnoses and how the use of MR-guided treatment may allow for smaller treatment volumes and optimized sparing of adjacent organs at risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.

    Article  PubMed  Google Scholar 

  2. National Cancer Institute. Cancer in children and adolescents. 2021. https://www.cancer.gov/types/childhood-cancers/child-adolescent-cancers-fact-sheet.

  3. Fidler-Benaoudia MM, Oeffinger KC, Yasui Y, Robison LL, Winter DL, Reulen RC, et al. A comparison of late mortality among survivors of childhood cancer in the United States and United Kingdom. J Natl Cancer Inst. 2021;113(5):562–71.

    Article  PubMed  Google Scholar 

  4. Phillips SM, Padgett LS, Leisenring WM, Stratton KK, Bishop K, Krull KR, et al. Survivors of childhood cancer in the United States: prevalence and burden of morbidity. Cancer Epidemiol Biomark Prev. 2015;24(4):653–63.

    Article  Google Scholar 

  5. Steliarova-Foucher E, Colombet M, Ries LAG, Moreno F, Dolya A, Bray F, et al. International incidence of childhood cancer, 2001-10: a population-based registry study. Lancet Oncol. 2017;18(6):719–31.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fischer-Valuck BW, Henke L, Green O, Kashani R, Acharya S, Bradley JD, et al. Two-and-a-half-year clinical experience with the world’s first magnetic resonance image guided radiation therapy system. Adv Radiat Oncol. 2017;2(3):485–93.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Metcalfe P, Liney GP, Holloway L, Walker A, Barton M, Delaney GP, et al. The potential for an enhanced role for MRI in radiation-therapy treatment planning. Technol Cancer Res Treat. 2013;12(5):429–46.

    Article  CAS  PubMed  Google Scholar 

  8. Dunlop A, Mitchell A, Tree A, Barnes H, Bower L, Chick J, et al. Daily adaptive radiotherapy for patients with prostate cancer using a high field MR-linac: initial clinical experiences and assessment of delivered doses compared to a C-arm linac. Clin Transl Radiat Oncol. 2020;23:35–42.

    PubMed  PubMed Central  Google Scholar 

  9. Henke L, Kashani R, Yang D, Zhao T, Green O, Olsen L, et al. Simulated online adaptive magnetic resonance-guided stereotactic body radiation therapy for the treatment of oligometastatic disease of the abdomen and central thorax: characterization of potential advantages. Int J Radiat Oncol Biol Phys. 2016;96(5):1078–86.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Winkel D, Bol GH, Werensteijn-Honingh AM, Intven MPW, Eppinga WSC, Hes J, et al. Target coverage and dose criteria based evaluation of the first clinical 1.5T MR-linac SBRT treatments of lymph node oligometastases compared with conventional CBCT-linac treatment. Radiother Oncol. 2020;146:118–25.

    Article  CAS  PubMed  Google Scholar 

  11. Kishan AU, Ma TM, Lamb JM, Casado M, Wilhalme H, Low DA, et al. Magnetic resonance imaging-guided vs computed tomography-guided stereotactic body radiotherapy for prostate cancer: the MIRAGE randomized clinical trial. JAMA Oncol. 2023;9(3):365–73.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lagendijk JJ, Raaymakers BW, Raaijmakers AJ, Overweg J, Brown KJ, Kerkhof EM, et al. MRI/linac integration. Radiother Oncol. 2008;86(1):25–9.

    Article  PubMed  Google Scholar 

  13. Klüter S. Technical design and concept of a 0.35 T MR-Linac. Clin Transl Radiat Oncol. 2019;18:98–101.

    PubMed  PubMed Central  Google Scholar 

  14. Dunkerley DAP, et al. Clinical implementational and site-specific workflows for a 1.5 T MR-Linac. J Clin Med. 2022;11(6):1662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rammohan N, et al. History of technological advancements towards MR-Linac: the future of image-guided radiotherapy. J Clin Med. 2022;11(16):4730.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Christiansen RL, Dysager L, Bertelsen AS, Hansen O, Brink C, Bernchou U. Accuracy of automatic deformable structure propagation for high-field MRI guided prostate radiotherapy. Radiat Oncol. 2020;15(1):32.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yadav P, Musunuru HB, Witt JS, Bassetti M, Bayouth J, Baschnagel AM. Dosimetric study for spine stereotactic body radiation therapy: magnetic resonance guided linear accelerator versus volumetric modulated arc therapy. Radiol Oncol. 2019;53(3):362–8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chamberlain M, Krayenbuehl J, van Timmeren JE, Wilke L, Andratschke N, Garcia Schüler H, et al. Head and neck radiotherapy on the MR linac: a multicenter planning challenge amongst MRIdian platform users. Strahlenther Onkol. 2021;197(12):1093–103.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Musunuru HB, Yadav P, Olson SJ, Anderson BM. Improved ipsilateral breast and Chest Wall sparing with MR-guided 3-fraction accelerated partial breast irradiation: a dosimetric study comparing MR-Linac and CT-Linac plans. Adv Radiat Oncol. 2021;6(3):100654.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Acharya S, Fischer-Valuck BW, Kashani R, Parikh P, Yang D, Zhao T, et al. Online magnetic resonance image guided adaptive radiation therapy: first clinical applications. Int J Radiat Oncol Biol Phys. 2016;94(2):394–403.

    Article  PubMed  Google Scholar 

  21. van Timmeren JE, Chamberlain M, Krayenbuehl J, Wilke L, Ehrbar S, Bogowicz M, et al. Comparison of beam segment versus full plan re-optimization in daily magnetic resonance imaging-guided online-adaptive radiotherapy. Phys Imaging Radiat Oncol. 2021;17:43–6.

    Article  PubMed  PubMed Central  Google Scholar 

  22. van Sörnsen de Koste JR, Palacios MA, Bruynzeel AME, Slotman BJ, Senan S, Lagerwaard FJ. MR-guided gated stereotactic radiation therapy delivery for lung, adrenal, and pancreatic tumors: a geometric analysis. Int J Radiat Oncol Biol Phys. 2018;102(4):858–66.

    Article  PubMed  Google Scholar 

  23. Ostrom QT, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014-2018. Neuro Oncol. 2021;23(12 Suppl 2):iii1–iii105.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Merchant TE, Kun LE, Hua CH, Wu S, Xiong X, Sanford RA, et al. Disease control after reduced volume conformal and intensity modulated radiation therapy for childhood craniopharyngioma. Int J Radiat Oncol Biol Phys. 2013;85(4):e187–92.

    Article  PubMed  Google Scholar 

  25. Merchant TE, Bendel AE, Sabin ND, Burger PC, Shaw DW, Chang E, et al. Conformal radiation therapy for pediatric ependymoma, chemotherapy for incompletely resected Ependymoma, and observation for completely resected, supratentorial ependymoma. J Clin Oncol. 2019;37(12):974–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peters S, Merta J, Schmidt L, Jazmati D, Kramer PH, Blase C, et al. Evaluation of dose, volume, and outcome in children with localized, intracranial ependymoma treated with proton therapy within the prospective KiProReg study. Neuro Oncol. 2022;24(7):1193–202.

    Article  PubMed  Google Scholar 

  27. Devine CA, Liu KX, Ioakeim-Ioannidou M, Susko M, Poussaint TY, Huisman T, et al. Brainstem injury in pediatric patients receiving posterior fossa photon radiation. Int J Radiat Oncol Biol Phys. 2019;105(5):1034–42.

    Article  CAS  PubMed  Google Scholar 

  28. Orukari I, Perkins S, Zhao T, Huang J, Caruthers DF, Duriseti S. Brainstem toxicity in pediatric patients treated with protons using a single-vault synchrocyclotron system. Int J Part Ther. 2022;9(1):12–7.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yock TI, Constine LS, Mahajan A. Protons, the brainstem, and toxicity: ingredients for an emerging dialectic. Acta Oncol. 2014;53(10):1279–82.

    Article  PubMed  Google Scholar 

  30. Rades D, Veninga T, Stalpers LJ, Basic H, Rudat V, Karstens JH, et al. Outcome after radiotherapy alone for metastatic spinal cord compression in patients with oligometastases. J Clin Oncol. 2007;25(1):50–6.

    Article  PubMed  Google Scholar 

  31. Rades D, Schild SE, Abrahm JL. Treatment of painful bone metastases. Nat Rev Clin Oncol. 2010;7(4):220–9.

    Article  PubMed  Google Scholar 

  32. Pica A, Miller R, Villà S, Kadish SP, Anacak Y, Abusaris H, et al. The results of surgery, with or without radiotherapy, for primary spinal myxopapillary ependymoma: a retrospective study from the rare cancer network. Int J Radiat Oncol Biol Phys. 2009;74(4):1114–20.

    Article  PubMed  Google Scholar 

  33. Kotecha R, Tom MC, Naik M, Angelov L, Benzel EC, Reddy CA, et al. Analyzing the role of adjuvant or salvage radiotherapy for spinal myxopapillary ependymomas. J Neurosurg Spine. 2020:1–6.

    Google Scholar 

  34. Zeng L, Chow E, Bedard G, Zhang L, Fairchild A, Vassiliou V, et al. Quality of life after palliative radiation therapy for patients with painful bone metastases: results of an international study validating the EORTC QLQ-BM22. Int J Radiat Oncol Biol Phys. 2012;84(3):e337–42.

    Article  PubMed  Google Scholar 

  35. Mizumoto M, Harada H, Asakura H, Hashimoto T, Furutani K, Hashii H, et al. Radiotherapy for patients with metastases to the spinal column: a review of 603 patients at Shizuoka cancer center hospital. Int J Radiat Oncol Biol Phys. 2011;79(1):208–13.

    Article  PubMed  Google Scholar 

  36. Pan H, Simpson DR, Mell LK, Mundt AJ, Lawson JD. A survey of stereotactic body radiotherapy use in the United States. Cancer. 2011;117(19):4566–72.

    Article  PubMed  Google Scholar 

  37. Redmond KJ, Robertson S, Lo SS, Soltys SG, Ryu S, McNutt T, et al. Consensus contouring guidelines for postoperative stereotactic body radiation therapy for metastatic solid tumor malignancies to the spine. Int J Radiat Oncol Biol Phys. 2017;97(1):64–74.

    Article  PubMed  Google Scholar 

  38. Ryu SI, Chang SD, Kim DH, Murphy MJ, Le QT, Martin DP, et al. Image-guided hypo-fractionated stereotactic radiosurgery to spinal lesions. Neurosurgery. 2001;49(4):838–46.

    CAS  PubMed  Google Scholar 

  39. Gerszten PC, Ozhasoglu C, Burton SA, Vogel WJ, Atkins BA, Kalnicki S, et al. CyberKnife frameless stereotactic radiosurgery for spinal lesions: clinical experience in 125 cases. Neurosurgery. 2004;55(1):89–98; discussion 98–9.

    Article  PubMed  Google Scholar 

  40. Han EY, Aima M, Hughes N, Briere TM, Yeboa DN, Castillo P, et al. Feasibility of spinal stereotactic body radiotherapy in Elekta Unity. J Radiosurg SBRT. 2020;7(2):127–34.

    PubMed  PubMed Central  Google Scholar 

  41. Han EY, Yeboa DN, Briere TM, Yang J, Wang H. Dosimetric analysis of MR-LINAC treatment plans for salvage spine SBRT re-irradiation. J Appl Clin Med Phys. 2022;23(10):e13752.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Albright JT, Topham AK, Reilly JS. Pediatric head and neck malignancies: US incidence and trends over 2 decades. Arch Otolaryngol Head Neck Surg. 2002;128(6):655–9.

    Article  PubMed  Google Scholar 

  43. Arboleda LP, Perez-de-Oliveira ME, Hoffmann IL, Cardinalli IA, Gallagher KP, Santos-Silva AR, et al. Clinical manifestations of head and neck cancer in pediatric patients, an analysis of 253 cases in a single Brazilian center. Med Oral Patol Oral Cir Bucal. 2022;27(3):e285–e93.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sengupta S, Pal R, Saha S, Bera SP, Pal I, Tuli IP. Spectrum of head and neck cancer in children. J Indian Assoc Pediatr Surg. 2009;14(4):200–3.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Boeke S, Monnich D, van Timmeren JE, Balermpas P. MR-guided radiotherapy for head and neck cancer: current developments, perspectives, and challenges. Front Oncol. 2021;11:616156.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gurney-Champion OJ, McQuaid D, Dunlop A, Wong KH, Welsh LC, Riddell AM, et al. MRI-based assessment of 3D intrafractional motion of head and neck cancer for radiation therapy. Int J Radiat Oncol Biol Phys. 2018;100(2):306–16.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chatterjee S, Maulik S, Prasath S, Arun B, Das A, Chakrabarty S, et al. Xerostomia quality of life and resource requirements following parotid sparing adaptive radiotherapy in head and neck cancers: results of a prospective cohort study (study ID CTRI/2017/11/010683). Radiother Oncol. 2022;168:250–5.

    Article  PubMed  Google Scholar 

  48. Castelli J, Simon A, Lafond C, Perichon N, Rigaud B, Chajon E, et al. Adaptive radiotherapy for head and neck cancer. Acta Oncol. 2018;57(10):1284–92.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang P, Simon A, Rigaud B, Castelli J, Ospina Arango JD, Nassef M, et al. Optimal adaptive IMRT strategy to spare the parotid glands in oropharyngeal cancer. Radiother Oncol. 2016;120(1):41–7.

    Article  PubMed  Google Scholar 

  50. Bernstein JM, Homer JJ, West CM. Dynamic contrast-enhanced magnetic resonance imaging biomarkers in head and neck cancer: potential to guide treatment? A systematic review. Oral Oncol. 2014;50(10):963–70.

    Article  PubMed  Google Scholar 

  51. Fatima K, Dasgupta A, DiCenzo D, Kolios C, Quiaoit K, Saifuddin M, et al. Ultrasound delta-radiomics during radiotherapy to predict recurrence in patients with head and neck squamous cell carcinoma. Clin Transl Radiat Oncol. 2021;28:62–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. McGee KP, Hwang KP, Sullivan DC, Kurhanewicz J, Hu Y, Wang J, et al. Magnetic resonance biomarkers in radiation oncology: the report of AAPM task group 294. Med Phys. 2021;48(7):e697–732.

    Article  PubMed  Google Scholar 

  53. Shukla-Dave A, Obuchowski NA, Chenevert TL, Jambawalikar S, Schwartz LH, Malyarenko D, et al. Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J Magn Reson Imaging. 2019;49(7):e101–e21.

    Article  PubMed  Google Scholar 

  54. Tran WT, Suraweera H, Quaioit K, Cardenas D, Leong KX, Karam I, et al. Predictive quantitative ultrasound radiomic markers associated with treatment response in head and neck cancer. Future Sci OA. 2019;6(1):FSO433.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bahig H, Yuan Y, Mohamed ASR, Brock KK, Ng SP, Wang J, et al. Magnetic resonance-based response assessment and dose adaptation in human papilloma virus positive tumors of the oropharynx treated with radiotherapy (MR-ADAPTOR): an R-IDEAL stage 2a-2b/Bayesian phase II trial. Clin Transl Radiat Oncol. 2018;13:19–23.

    PubMed  PubMed Central  Google Scholar 

  56. McDonald BA, Vedam S, Yang J, Wang J, Castillo P, Lee B, et al. Initial feasibility and clinical implementation of daily MR-guided adaptive head and neck cancer radiation therapy on a 1.5T MR-Linac system: prospective R-IDEAL 2a/2b systematic clinical evaluation of technical innovation. Int J Radiat Oncol Biol Phys. 2021;109(5):1606–18.

    Article  PubMed  Google Scholar 

  57. Subesinghe M, Scarsbrook AF, Sourbron S, Wilson DJ, McDermott G, Speight R, et al. Alterations in anatomic and functional imaging parameters with repeated FDG PET-CT and MRI during radiotherapy for head and neck cancer: a pilot study. BMC Cancer. 2015;15:137.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Laningham FH, Kun LE, Reddick WE, Ogg RJ, Morris EB, Pui CH. Childhood central nervous system leukemia: historical perspectives, current therapy, and acute neurological sequelae. Neuroradiology. 2007;49(11):873–88.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nachman J, Sather HN, Cherlow JM, Sensel MG, Gaynon PS, Lukens JN, et al. Response of children with high-risk acute lymphoblastic leukemia treated with and without cranial irradiation: a report from the Children’s cancer group. J Clin Oncol. 1998;16(3):920–30.

    Article  CAS  PubMed  Google Scholar 

  60. Waber DP, Turek J, Catania L, Stevenson K, Robaey P, Romero I, et al. Neuropsychological outcomes from a randomized trial of triple intrathecal chemotherapy compared with 18 Gy cranial radiation as CNS treatment in acute lymphoblastic leukemia: findings from Dana-Farber Cancer Institute ALL consortium protocol 95-01. J Clin Oncol. 2007;25(31):4914–21.

    Article  CAS  PubMed  Google Scholar 

  61. McNeer JL, Schmiegelow K. Management of CNS disease in pediatric acute lymphoblastic leukemia. Curr Hematol Malig Rep. 2022;17(1):1–14.

    Article  PubMed  Google Scholar 

  62. Thastrup M, Duguid A, Mirian C, Schmiegelow K, Halsey C. Central nervous system involvement in childhood acute lymphoblastic leukemia: challenges and solutions. Leukemia. 2022;36(12):2751–68.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Brooks HW, Evans AE, Glass RM, Pang EM. Chloromas of the head and neck in childhood: the initial manifestation of myeloid leukemia in three patients. Arch Otolaryngol. 1974;100(4):306–8.

    Article  CAS  PubMed  Google Scholar 

  64. Lusher JM. Chloroma as a presenting feature of acute leukemia: a report of two cases in children. Am J Dis Child. 1964;108(1):62–6.

    Article  CAS  PubMed  Google Scholar 

  65. Samborska M, Derwich K, Skalska-Sadowska J, Kurzawa P, Wachowiak J. Myeloid sarcoma in children—diagnostic and therapeutic difficulties. Contemp Oncol (Pozn). 2016;20(6):444–8.

    CAS  PubMed  Google Scholar 

  66. Dusenbery KE, Howells WB, Arthur DC, Alonzo T, Lee JW, Kobrinsky N, et al. Extramedullary leukemia in children with newly diagnosed acute myeloid leukemia: a report from the Children’s cancer group. J Pediatr Hematol Oncol. 2003;25(10):760–8.

    Article  PubMed  Google Scholar 

  67. Majdoul S, Colson-Durand L, To NH, Belkacemi Y. Adaptive radiotherapy for an uncommon chloroma. Case Rep Oncol. 2016;9(3):593–8.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bakst R, Wolden S, Yahalom J. Radiation therapy for chloroma (granulocytic sarcoma). Int J Radiat Oncol Biol Phys. 2012;82(5):1816–22.

    Article  PubMed  Google Scholar 

  69. Bakst RL, Dabaja BS, Specht LK, Yahalom J. Use of radiation in extramedullary leukemia/chloroma: guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys. 2018;102(2):314–9.

    Article  PubMed  Google Scholar 

  70. Lee DY, Baron J, Wright CM, Plastaras JP, Perl AE, Paydar I. Radiation therapy for chemotherapy refractory gingival myeloid sarcoma. Front Oncol. 2021;11:671514.

    Article  PubMed  PubMed Central  Google Scholar 

  71. AlSemari MA, Perrotta M, Russo C, Alkatan HM, Maktabi A, Elkhamary S, et al. Orbital myeloid sarcoma (chloroma): report of 2 cases and literature review. Am J Ophthalmol Case Rep. 2020;19:100806.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Matsui M, Yamanaka J, Shichino H, Sato N, Kubota K, Matsushita T. FDG-PET/CT for detection of extramedullary disease in 2 pediatric patients with AML. J Pediatr Hematol Oncol. 2016;38(5):398–401.

    Article  PubMed  Google Scholar 

  73. Shinagare AB, Krajewski KM, Hornick JL, Zukotynski K, Kurra V, Jagannathan JP, et al. MRI for evaluation of myeloid sarcoma in adults: a single-institution 10-year experience. AJR Am J Roentgenol. 2012;199(6):1193–8.

    Article  PubMed  Google Scholar 

  74. Singh A, Kumar P, Chandrashekhara SH, Kumar A. Unravelling chloroma: review of imaging findings. Br J Radiol. 2017;90(1075):20160710.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wu J, Jiang G, Wu J, Ou L, Zhang C. 18F-FDG PET/CT imaging of testicular myeloid sarcoma in a pediatric patient. Clin Nucl Med. 2021;46(1):84–5.

    Article  PubMed  Google Scholar 

  76. Zhang M, Yang X, Si Y, Kan Y, Yang J. 18 F-FDG PET/CT findings of myeloid sarcoma involving the left ventricle and kidney in a pediatric patient. Clin Nucl Med. 2023;48(1):103–5.

    Article  PubMed  Google Scholar 

  77. Sandlund JT, Martin MG. Non-Hodgkin lymphoma across the pediatric and adolescent and young adult age spectrum. Hematology. 2016;2016(1):589–97.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Burkhardt B, Woessmann W, Zimmermann M, Kontny U, Vormoor J, Doerffel W, et al. Impact of cranial radiotherapy on central nervous system prophylaxis in children and adolescents with central nervous system-negative stage III or IV lymphoblastic lymphoma. J Clin Oncol. 2006;24(3):491–9.

    Article  PubMed  Google Scholar 

  79. Link MP, Shuster JJ, Donaldson SS, Berard CW, Murphy SB. Treatment of children and young adults with early-stage non-Hodgkin’s lymphoma. N Engl J Med. 1997;337(18):1259–66.

    Article  CAS  PubMed  Google Scholar 

  80. Seidemann K, Tiemann M, Schrappe M, Yakisan E, Simonitsch I, Janka-Schaub G, et al. Short-pulse B-non-Hodgkin lymphoma-type chemotherapy is efficacious treatment for pediatric anaplastic large cell lymphoma: a report of the Berlin-Frankfurt-Munster group trial NHL-BFM 90. Blood. 2001;97(12):3699–706.

    Article  CAS  PubMed  Google Scholar 

  81. Bair SM, Svoboda J. Response-adapted treatment strategies in Hodgkin lymphoma using PET imaging. PET Clin. 2019;14(3):353–68.

    Article  PubMed  Google Scholar 

  82. Hall MD, Terezakis SA, Lucas JT, Gallop-Evans E, Dieckmann K, Constine LS, et al. Radiation therapy across pediatric Hodgkin lymphoma research group protocols: a report from the staging, evaluation, and response criteria harmonization (SEARCH) for childhood, adolescent, and young adult Hodgkin lymphoma (CAYAHL) group. Int J Radiat Oncol Biol Phys. 2022;112(2):317–34.

    Article  PubMed  Google Scholar 

  83. Seravalli E, Kroon PS, Buatti JM, Hall MD, Mandeville HC, Marcus KJ, et al. The potential role of MR-guided adaptive radiotherapy in pediatric oncology: results from a SIOPE-COG survey. Clin Transl Radiat Oncol. 2021;29:71–8.

    PubMed  PubMed Central  Google Scholar 

  84. National Cancer Institute. Childhood Cancer Data Initiative, National Childhood Cancer Registry Explorer. 2023. https://nccrexplorer.ccdi.cancer.gov/.

  85. Gadd S, Huff V, Skol AD, Renfro LA, Fernandez CV, Mullen EA, et al. Genetic changes associated with relapse in favorable histology Wilms tumor: a Children’s oncology group AREN03B2 study. Cell Rep Med. 2022;3(6):100644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gratias EJ, Dome JS, Jennings LJ, Chi YY, Tian J, Anderson J, et al. Association of chromosome 1q gain with inferior survival in favorable-histology Wilms tumor: a report from the Children’s oncology group. J Clin Oncol. 2016;34(26):3189–94.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Grundy PE, Breslow NE, Li S, Perlman E, Beckwith JB, Ritchey ML, et al. Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorable-histology Wilms tumor: a report from the National Wilms Tumor Study Group. J Clin Oncol. 2005;23(29):7312–21.

    Article  CAS  PubMed  Google Scholar 

  88. Wilm’s tumor. In: Gunderson LL, editor. Gunderson and Tepper’s clinical radiation oncology. 4th ed. Philadelphia: Elsevier; 2015.

    Google Scholar 

  89. Mul J, Seravalli E, Bosman ME, van de Ven CP, Littooij AS, van Grotel M, et al. Estimated clinical benefit of combining highly conformal target volumes with volumetric-modulated arc therapy (VMAT) versus conventional flank irradiation in pediatric renal tumors. Clin Transl Radiat Oncol. 2021;29:20–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kozak MM, Crompton D, Gross BA, Harshman L, Dickens D, Snyder J, et al. Initial clinical applications treating pediatric and adolescent patients using MR-guided radiotherapy. Front Oncol. 2022;12:962926.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Meier CM, Furtwangler R, von Schweinitz D, Stein R, Welter N, Wagenpfeil S, et al. Vena cava thrombus in patients with Wilms tumor. Cancers (Basel). 2022;14(16):3924.

    Article  PubMed  Google Scholar 

  92. Hoeben BA, Carrie C, Timmermann B, Mandeville HC, Gandola L, Dieckmann K, et al. Management of vertebral radiotherapy dose in paediatric patients with cancer: consensus recommendations from the SIOPE radiotherapy working group. Lancet Oncol. 2019;20(3):e155–e66.

    Article  PubMed  Google Scholar 

  93. Chen MJ, Leao CR, Simoes RCP, Belletti FS, Figueiredo MLS, Cypriano MS. Kidney-sparing whole abdominal irradiation in Wilms tumor: potential advantages of VMAT technique. Pediatr Blood Cancer. 2020;67(5):e28223.

    Article  PubMed  Google Scholar 

  94. Ward E, DeSantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin. 2014;64(2):83–103.

    Article  PubMed  Google Scholar 

  95. Vo KT, Matthay KK, Neuhaus J, London WB, Hero B, Ambros PF, et al. Clinical, biologic, and prognostic differences on the basis of primary tumor site in neuroblastoma: a report from the international neuroblastoma risk group project. J Clin Oncol. 2014;32(28):3169–76.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Paulino AC, Ferenci MS, Chiang KY, Nowlan AW, Marcus RB Jr. Comparison of conventional to intensity modulated radiation therapy for abdominal neuroblastoma. Pediatr Blood Cancer. 2006;46(7):739–44.

    Article  PubMed  Google Scholar 

  97. Fleming ID, Etcubanas E, Patterson R, Rao B, Pratt C, Hustu O, et al. The role of surgical resection when combined with chemotherapy and radiation in the management of pelvic rhabdomyosarcoma. Ann Surg. 1984;199(5):509–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Groff DB. Pelvic neoplasms in children. J Surg Oncol. 2001;77(1):65–71.

    Article  CAS  PubMed  Google Scholar 

  99. Zobel M, Zamora A, Sura A, Wang L, Stein J, Marachelian A, et al. The clinical management and outcomes of pelvic neuroblastic tumors. J Surg Res. 2020;249:8–12.

    Article  PubMed  Google Scholar 

  100. Romano E, Simon R, Minard-Colin V, Martin V, Bockel S, Espenel S, et al. Analysis of radiation dose/volume effect relationship for anorectal morbidity in children treated for pelvic malignancies. Int J Radiat Oncol Biol Phys. 2021;109(1):231–41.

    Article  PubMed  Google Scholar 

  101. Cotter SE, Herrup DA, Friedmann A, Macdonald SM, Pieretti RV, Robinson G, et al. Proton radiotherapy for pediatric bladder/prostate rhabdomyosarcoma: clinical outcomes and dosimetry compared to intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2011;81(5):1367–73.

    Article  PubMed  Google Scholar 

  102. Ahmed SK, Witten BG, Harmsen WS, Rose PS, Krailo M, Marcus KJ, et al. Analysis of local control outcomes and clinical prognostic factors in localized pelvic Ewing sarcoma patients treated with radiation therapy: a report from the Children’s oncology group. Int J Radiat Oncol Biol Phys. 2023;115(2):337–46.

    Article  PubMed  Google Scholar 

  103. Ahmed SK, Indelicato DJ, Chuba PJ, Krailo M, Buxton A, Randall RL, et al. Local failure in non-metastatic Ewing sarcoma patients treated with definitive radiation therapy on AEWS1031: a report from the Children’s oncology group. Int J Radiat Oncol Biol Phys. 2022;114(3 Suppl):S69–70.

    Article  Google Scholar 

  104. Ahmed SK, Robinson SI, Arndt CAS, Petersen IA, Haddock MG, Rose PS, et al. Pelvis Ewing sarcoma: local control and survival in the modern era. Pediatr Blood Cancer. 2017;64(9).

    Google Scholar 

  105. Talleur AC, Navid F, Spunt SL, McCarville MB, Wu J, Mao S, et al. Limited margin radiation therapy for children and young adults with Ewing sarcoma achieves high rates of local tumor control. Int J Radiat Oncol Biol Phys. 2016;96(1):119–26.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Uezono H, Indelicato DJ, Rotondo RL, Mailhot Vega RB, Bradfield SM, Morris CG, et al. Treatment outcomes after proton therapy for Ewing sarcoma of the pelvis. Int J Radiat Oncol Biol Phys. 2020;107(5):974–81.

    Article  PubMed  Google Scholar 

  107. Adaptive radiation therapy. Med Phys. 2011;38(7):4467–4468.

    Google Scholar 

  108. Prior P, Chen X, Botros M, Paulson ES, Lawton C, Erickson B, et al. MRI-based IMRT planning for MR-linac: comparison between CT- and MRI-based plans for pancreatic and prostate cancers. Phys Med Biol. 2016;61(10):3819–42.

    Article  CAS  PubMed  Google Scholar 

  109. Chen X, Prior P, Chen GP, Schultz CJ, Li XA. Technical note: dose effects of 1.5 T transverse magnetic field on tissue interfaces in MRI-guided radiotherapy. Med Phys. 2016;43(8):4797.

    Article  PubMed  Google Scholar 

  110. Raaijmakers AJ, Raaymakers BW, Lagendijk JJ. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength. Phys Med Biol. 2008;53(4):909–23.

    Article  CAS  PubMed  Google Scholar 

  111. Li XA, Liu F, Tai A, Ahunbay E, Chen G, Kelly T, et al. Development of an online adaptive solution to account for inter- and intra-fractional variations. Radiother Oncol. 2011;100(3):370–4.

    Article  PubMed  Google Scholar 

  112. Ahunbay EE, Li XA. Gradient maintenance: a new algorithm for fast online replanning. Med Phys. 2015;42(6):2863–76.

    Article  PubMed  Google Scholar 

  113. Zhang Y, Paulson E, Lim S, Hall WA, Ahunbay E, Mickevicius NJ, et al. A patient-specific autosegmentation strategy using multi-input deformable image registration for magnetic resonance imaging-guided online adaptive radiation therapy: a feasibility study. Adv Radiat Oncol. 2020;5(6):1350–8.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ates O, Ahunbay EE, Moreau M, Li XA. Technical note: a fast online adaptive replanning method for VMAT using flattening filter free beams. Med Phys. 2016;43(6):2756–64.

    Article  PubMed  Google Scholar 

  115. Zhang J, Ahunbay E, Li XA. Technical note: acceleration of online adaptive replanning with automation and parallel operations. Med Phys. 2018;45(10):4370–6.

    Article  PubMed  Google Scholar 

  116. Boik N, Hall MD. Psychosocial support for pediatric patients at proton therapy institutions. Int J Part Ther. 2020;7(1):28–33.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Salerno S, Granata C, Trapenese M, Cannata V, Curione D, Rossi Espagnet MC, et al. Is MRI imaging in pediatric age totally safe? A critical reprisal. Radiol Med. 2018;123(9):695–702.

    Article  PubMed  Google Scholar 

  118. Huynh E, Hosny A, Guthier C, Bitterman DS, Petit SF, Haas-Kogan DA, et al. Artificial intelligence in radiation oncology. Nat Rev Clin Oncol. 2020;17(12):771–81.

    Article  PubMed  Google Scholar 

  119. Fuchs H, Padilla-Cabal F, Oborn BM, Georg D. Commissioning a beam line for MR-guided particle therapy assisted by in silico methods. Med Phys. 2023;50(2):1019–28.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret M. Kozak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kozak, M.M., Mahase, S., Traughber, B., Machtay, M., Buatti, J. (2024). MR-Guided Radiotherapy in the Pediatric and Adolescent Patient. In: Das, I.J., Alongi, F., Yadav, P., Mittal, B.B. (eds) A Practical Guide to MR-Linac. Springer, Cham. https://doi.org/10.1007/978-3-031-48165-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48165-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48164-2

  • Online ISBN: 978-3-031-48165-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics