Skip to main content

Considerations for Using MR Linac for the Treatment of Patients with Gynecologic Cancer: A Practical Guide and Early Clinical Experience

  • Chapter
  • First Online:
A Practical Guide to MR-Linac

Abstract

Image guidance and adaptive treatment approaches are increasingly used to deliver highly conformal radiation therapy (RT) for gynecologic cancer management. RT delivered with curative or palliative intent can be administered alone or combined with surgery or systemic treatments. Advanced treatment planning and delivery techniques such as intensity-modulated radiation therapy, including volumetric-modulated arc therapy and image-guided adaptive brachytherapy allow for highly conformal radiation dose delivery leading to improved tumor control rates and less treatment toxicity. Quality onboard imaging that provides accurate visualization of the target and surrounding organs at risk is a critical feature of these advanced techniques. As soft tissue contrast resolution is superior with magnetic resonance imaging (MRI) compared to other imaging modalities, MRI has been used increasingly to delineate tumors from adjacent soft tissues and organs at risk from the initial diagnosis to tumor response evaluation. Gynecologic cancers often have poor contrast resolution compared to the surrounding tissues on computed tomography scans, and consequently, the benefit of MRI is high. One example is in the management of locally advanced cervix cancer, where MRI guidance has been broadly implemented for adaptive brachytherapy. The role of MRI for external beam RT is also steadily increasing. MRI information is used for treatment planning, predicting and monitoring position shifts, and accounting for tissue deformation and target regression during treatment. The recent clinical introduction of online MRI-guided RT (MRgRT) is considered the next step in high-precision RT. This technology provides a tool to take full advantage of MRI not only at the time of initial treatment planning but for daily position verification and online plan adaptation as well. Cervical, endometrial, vaginal, and oligometastatic lesions of gynecologic cancer origin are increasingly being treated on MRI linear accelerator systems worldwide. This chapter summarizes the current state, early clinical experience, and future directions of MRgRT in the management of gynecologic cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sung H, Ferlay J, Siegel RL, Jemal A, et al. Global cancer statistics 2020; GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics 2023. CA Cancer J Clin. 2023;73(1):17–48. https://doi.org/10.3322/caac.21763.

    Article  PubMed  Google Scholar 

  3. Palma DA, Olson R, Harrow S, et al. Stereotactic ablative radiotherapy for the comprehensive treatment of oligometastatic cancers: long-term results of the SABR-COMET phase II randomized trial. J Clin Oncol. 2020;38(25):2038–838. https://doi.org/10.1200/JCO.20.00818.

    Article  Google Scholar 

  4. Gregoire V, Guckenberger M, Haustermans K, et al. Image guidance in radiation therapy for better cure of cancer. Mol Oncol. 2020;14:1470–91.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sturdza A, Pötter R, Fokdal LU, Haie-Meder C, et al. Image-guided brachytherapy in locally advanced cervical cancer: improved pelvic control and survival in RetroEMBRACE, a multicenter cohort study. Radiother Oncol. 2016;120(3):428–33. https://doi.org/10.1016/j.radonc.2016.03.011.

    Article  PubMed  Google Scholar 

  6. Westerveld H, Schmid MP, Nout RA, et al. Image-guided adaptive brachytherapy (IGABT) for primary vaginal cancer: results of the international multicenter RetroEMBRAVE cohort study. Cancers (Basel). 2021;13(6):1459. https://doi.org/10.3390/cancers13061459.

    Article  CAS  PubMed  Google Scholar 

  7. Scoutt LM, McCarthy SM. Applications of magnetic resonance imaging to gynecology. Top Magn Reson Imaging. 1990;2(3):37–49.

    Article  CAS  PubMed  Google Scholar 

  8. Russell AH, Anderson M, Walter J, Kinney W, Smith L, Scudder S. The integration of computed tomography and magnetic resonance imaging in treatment planning for gynecologic cancer. Clin Obstet Gynecol. 1992;35(1):55–72. https://doi.org/10.1097/00003081-199203000-0001.

    Article  CAS  PubMed  Google Scholar 

  9. Pötter R, Dimopoulos J, Georg P, et al. Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer. Radiother Oncol. 2007;83(2):148–55. https://doi.org/10.1016/j.radonc.2007.04.012.

    Article  PubMed  Google Scholar 

  10. Nag S, Chao C, Erickson B, et al. The American Brachytherapy Society recommendations for low-dose-rate brachytherapy for carcinoma of the cervix. Int J Radiat Oncol Biol Phys. 2002;52(1):33–48. https://doi.org/10.1016/s0360-3016(01)01755-2.

    Article  PubMed  Google Scholar 

  11. Haie-Meder C, Pötter R, Van Limbergen E, et al. Gynaecological (GYN) GEC-ESTRO Working Group Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image-based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol. 2005;74(3):235–45. https://doi.org/10.1016/j.radonc.2004.12.015.

    Article  PubMed  Google Scholar 

  12. Pötter R, Tanderup K, Schmid MP, EMBRACE Collaborative Group, et al. MRI-guided adaptive brachytherapy in locally advanced cervical cancer (EMBRACE-I): a multicenter prospective cohort study. Lancet Oncol. 2021;22(4):538–47. https://doi.org/10.1016/S1470-2045(20)30753-1.

    Article  PubMed  Google Scholar 

  13. Balleyguier C, Sala E, Da Cunha T, et al. Staging of uterine cervical cancer with MRI: guidelines of the European Society of Urogenital Radiology. Eur Radiol. 2011;21(5):1102–10. https://doi.org/10.1007/s00330-010-1998-x.

    Article  PubMed  Google Scholar 

  14. AJCC cancer staging manual. 8th ed. Cervical cancer staging. Springer; 2017.

    Google Scholar 

  15. Sala E, Rockall A, Rangarajan D, Kubik-Huch RA. The role of dynamic contrast enhanced and diffusion-weighted magnetic resonance imaging in the female pelvis. Eur J Radiol. 2010;76(3):367–85. https://doi.org/10.1016/j.ejrad.2010.01.026.

    Article  PubMed  Google Scholar 

  16. Otero-Garcia MM, Mesa-Alvarez A, Nikolic O, et al. Role of MRI in staging and follow up of endometrial and cervical cancer: pitfalls and mimickers. Insights Imaging. 2019;10(19):1–22. https://doi.org/10.1186/s13244-019-0696-8.

    Article  Google Scholar 

  17. Zhang W, Chen C, Liu P, et al. Impact of pelvic MRI in routine clinical practice on staging of IB1-IIA2 cervical cancer. Cancer Manag Res. 2019;11:3603–9. https://doi.org/10.2147/CMAR.S197496.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Akita A, Shinmoto H, Hayashi S, et al. Comparison of T2-weighted and contrast-enhanced T1-weighted MR imaging at 1.5 T for assessing the local extent of cervical carcinoma. Eur Radiol. 2011;21(9):1850–7. https://doi.org/10.1007/s00330-011-2122-6.

    Article  PubMed  Google Scholar 

  19. Meissnitzer M, Forstner R. MRI of endometrium cancer—how we do it. Cancer Imaging. 2016;16:11. https://doi.org/10.1186/s40644-016-0069-1.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Seki H, Azumi R, Kimura M, Sakai K. Stromal invasion by carcinoma of the cervix: assessment with dynamic MR imaging. Am J Roentgenol. 1997;168(6):1579–85. https://doi.org/10.2214/ajr.168.6.9168730.

    Article  CAS  Google Scholar 

  21. Vargas HA, Akin O, Zheng J, et al. The value of MR imaging when the site of uterine cancer origin is uncertain. Radiology. 2011;258(3):785–92. https://doi.org/10.1148/radiol.10101147.

    Article  PubMed  Google Scholar 

  22. Shweel MA, Abdel-Gawad EA, Abdel-Gawad EA, Abdelghany HS, Abdel-Rahman AM, Ibrahim EM. Uterine cervical malignancy: diagnostic accuracy of MRI with histopathologic correlation. J Clin Imaging Sci. 2012;2:42. https://doi.org/10.4103/2156-7514.99175.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Thomeer MG, Gerestein C, Spronk S, van Doorn HC, van der Ham E, Hunink MG. Clinical examination versus magnetic resonance imaging in the pretreatment staging of cervical carcinoma: systematic review and meta-analysis. Eur Radiol. 2013;23(7):2005–18. https://doi.org/10.1007/s00330-013-2783-4.

    Article  PubMed  Google Scholar 

  24. Woo S, Suh CH, Kim SY, Cho JY, Kim SH. Magnetic resonance imaging for detection of parametrial invasion in cervical cancer: an updated systematic review and meta-analysis of the literature between 2012 and 2016. Eur Radiol. 2018;28(2):530–41. https://doi.org/10.1007/s00330-017-4958-x.

    Article  PubMed  Google Scholar 

  25. Bourgioti C, Chatoupis K, Moulopoulos LA. Current imaging strategies for the evaluation of uterine cervical cancer. World J Radiol. 2016;8(4):342–54. https://doi.org/10.4329/wjr.v8.i4.342.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sala E, Wakely S, Senior E, Lomas D. MRI of malignant neoplasms of the uterine corpus and cervix. Am J Roentgenol. 2007;188(6):1577–87. https://doi.org/10.2214/AJR.06.1196.

    Article  Google Scholar 

  27. Atcı N, Özgür T, Öztürk F, Dolapçıoğlu KS. Utility of intravaginal ultrasound gel for local staging of cervical carcinoma on MRI. Clin Imaging. 2016;40(6):1104–7. https://doi.org/10.1016/j.clinimag.2016.07.004.

    Article  PubMed  Google Scholar 

  28. Lin G, Ho KC, Wang JJ, et al. Detection of lymph node metastasis in cervical and uterine cancers by diffusion-weighted magnetic resonance imaging at 3T. J Magn Reson Imaging. 2008;28(1):128–35. https://doi.org/10.1002/jmri.21412.

    Article  PubMed  Google Scholar 

  29. Liu Y. Benign ovarian and endometrial uptake on FDG PET-CT: patterns and pitfalls. Ann Nucl Med. 2009;23(2):107–12. https://doi.org/10.1007/s12149-008-0227-z.

    Article  CAS  PubMed  Google Scholar 

  30. Nakai G, Matsuki M, Inada Y, et al. Detection and evaluation of pelvic lymph nodes in patients with gynecologic malignancies using body diffusion-weighted magnetic resonance imaging. J Comput Assist Tomogr. 2008;32(5):764–8. https://doi.org/10.1097/RCT.0b013e318153fd43.

    Article  PubMed  Google Scholar 

  31. Choi HJ, Kim SH, Seo SS, et al. MRI for pretreatment lymph node staging in uterine cervical cancer. Am J Roentgenol. 2006;187(5):W538–43. https://doi.org/10.2214/AJR.05.0263.

    Article  Google Scholar 

  32. Bates DB, Homsi ME, Chang KJ, et al. MRI for rectal cancer: staging, MR-CRM, EMVI, lymph node staging and post-treatment response. Clin Colorectal Cancer. 2022;21(1):10–8. https://doi.org/10.1016/j.clcc.2021.10.007.

    Article  PubMed  Google Scholar 

  33. Nam H, Huh SJ, Park W, et al. Prognostic significance of MRI-detected bladder muscle and/or serosal invasion in patients with cervical cancer treated with radiotherapy. Br J Radiol. 2010;83:868–73. https://doi.org/10.1259/bjr/66646798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wakatsuki M, Kato S, Kiyohara H, et al. The prognostic value of rectal invasion for stage IVA uterine cervical cancer treated with radiation therapy. BMC Cancer. 2016;16:244. https://doi.org/10.1186/s12885-016-2268-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nougaret S, Horta M, Sala E, et al. Endometrial cancer MRI staging: update guidelines of the European Society of Urogenital Radiology. Eur Radiol. 2019;29(2):792–805. https://doi.org/10.1007/s00330-018-5515.

    Article  PubMed  Google Scholar 

  36. Creasman WT, Morrow CP, Bundy BN, Homesly HD, Graham JE, Heller PB. Surgical pathologic spread patterns of endometrial cancer. A Gynecologic Oncology Group Study. Cancer. 1987;60(8):2035–41. https://doi.org/10.1002/1097-0142(19901015)60:8.

    Article  CAS  PubMed  Google Scholar 

  37. Schwarz JK, Beriwal S, Esthappan J, et al. Consensus statement for brachytherapy for the treatment of medically inoperable endometrial cancer. Brachytherapy. 2015;14(5):587–99. https://doi.org/10.1016/j.brachy.2015.06.002.

    Article  PubMed  Google Scholar 

  38. van de Bunt L, van der Heide UA, Ketelaars M, de Kort GAP, Jugenliemk-Schulz IM. Conventional, conformal, and intensity-modulated radiation therapy treatment planning of external beam radiotherapy for cervical cancer: the impact of tumor regression. Int J Radiat Oncol Biol Phys. 2006;64(1):189–96. https://doi.org/10.1016/j.ijrobp.2005.04.025.

    Article  PubMed  Google Scholar 

  39. van de Bunt L, Jürgenliemk-Schulz IM, de Kort GAP, Roesink JM, Tersteeg RJHA, van der Heide UA. Motion and deformation of the target volumes during IMRT for cervical cancer: what margins do we need? Radiother Oncol. 2008;88(2):233–40. https://doi.org/10.1016/j.radonc.2007.12.017.

    Article  PubMed  Google Scholar 

  40. Kerkhof EM, Raaymakers BW, van der Heide UA, van de Bunt L, Jürgenliemk-Schulz IM, Lagendijk JJW. Online MRI guidance for healthy tissue sparing in patients with cervical cancer: an IMRT planning study. Radiother Oncol. 2008;88(2):241–9. https://doi.org/10.1016/j.radonc.2008.04.009.

    Article  PubMed  Google Scholar 

  41. Bowen SR, Yuh WTC, Hippe DS, et al. Tumor radiomic heterogeneity: multiparametric functional imaging to characterize variability and predict response following cervical cancer radiation therapy. J Magn Reson Imaging. 2018;47(5):1388–96. https://doi.org/10.1002/jmri.25874.

    Article  PubMed  Google Scholar 

  42. De Boer P, Mandija S, Werensteijn-Honingh AM, van den Berg CAT, de Leeuw AAC, Jürgenliemk Schulz IM. Cervical cancer apparent diffusion coefficient values during external beam radiotherapy. Phys Imaging Radiat Oncol. 2019;9:77–82. https://doi.org/10.1016/j.phro.2019.03.001.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Han K, Croke J, Foltz W, et al. A prospective study of DWI, DCE-MRI and FDG PET imaging for target delineation in brachytherapy for cervical cancer. Radiother Oncol. 2016;120(3):519–25. https://doi.org/10.1016/j.radonc.2016.08.002.

    Article  PubMed  Google Scholar 

  44. Nougaret S, McCague C, Tibermacine H, Vargas HA, Rizzo S, Sala E. Radiomics and radiogenomics in ovarian cancer: a literature review. Abdom Radiol (NY). 2021;46(6):2308–22. https://doi.org/10.1007/s00261-020-02820-z.

    Article  CAS  PubMed  Google Scholar 

  45. Michalet M, Azria D, Tardieu M, Tibermacine H, Nougaret S. Radiomics in radiation oncology for gynecological malignancies: a review of literature. Br J Radiol. 2021;94(1125):20210032.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Takada A, Yokota H, Watanabe Nemoto M, Horikoshi T, Matsushima J, Uno T. A multi-scanner study of MRI radiomics in uterine cervical cancer: prediction of infield tumor control after definitive radiotherapy based on a machine learning method including peritumoral regions. Jpn J Radiol. 2020;38(3):265–73. https://doi.org/10.1007/s11604-019-00917-0.

    Article  PubMed  Google Scholar 

  47. Engin G. Cervical cancer: MR imaging findings before, during, and after radiation therapy. Eur Radiol. 2006;16(2):313–24. https://doi.org/10.1007/s00330-005-2804-z.

    Article  PubMed  Google Scholar 

  48. Dappa E, Elger T, Hasenburg A, Düber C, Battista MJ, Hötker AM. The value of advanced MRI techniques in the assessment of cervical cancer: a review. Insights Imaging. 2017;8:471–81.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Fu C, Feng X, Bian D, et al. Simultaneous changes of magnetic resonance diffusion-weighted imaging and pathological microstructure in locally advanced cervical cancer caused by neoadjuvant chemotherapy. J Magn Reson Imaging. 2015;42:427–35.

    Article  PubMed  Google Scholar 

  50. Kuang F, Yan Z, Wang J, Rao Z. The value of diffusion-weighted MRI to evaluate the response to radiochemotherapy for cervical cancer. Magn Reson Imaging. 2014;32:342–9.

    Article  PubMed  Google Scholar 

  51. Liu Y, Sun H, Bai R, Ye Z. Time-window of early detection of response to concurrent chemoradiation in cervical cancer by using diffusion-weighted MR imaging: a pilot study. Radiat Oncol. 2015;10:185.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Somoye G, Harry V, Semple S, et al. Early diffusion-weighted magnetic resonance imaging can predict survival in women with locally advanced cancer of the cervix treated with combined chemo-radiation. Eur Radiol. 2012;22:2319–27.

    Article  PubMed  Google Scholar 

  53. de Foucher T, Bendifallah S, Ouldamer L, et al. Patterns of recurrence and prognosis in locally advanced FIGO stage IB2 to IIB cervical cancer: retrospective multicenter study from the FRANCOGYN group France. Eur J Surg Oncol. 2019;45(4):659–65. https://doi.org/10.1016/j.ejso.2018.11.014.

    Article  PubMed  Google Scholar 

  54. Schmid MP, Franckena M, Kirchheiner K, et al. Distant metastasis in patients with cervical cancer after primary radiotherapy with or without chemotherapy and image-guided adaptive brachytherapy. Gynecol Oncol. 2014;133(2):256–62. https://doi.org/10.1016/j.ygyno.2014.02.004.

    Article  CAS  PubMed  Google Scholar 

  55. Sohaib SA, Houghton SL, Meroni R, Rockall AG, Blake P, Reznek RH. Recurrent endometrial cancer: patterns of recurrent disease and assessment of prognosis. Clin Radiol. 2007;62(1):28–34. https://doi.org/10.1016/j.crad.2006.06.015.

    Article  CAS  PubMed  Google Scholar 

  56. Lucas R, Dias JL, Cunha TM. Added value of diffusion-weighted MRI in detection of cervical cancer recurrence: comparison with morphologic and dynamic contrast-enhanced MRI sequences. Diagn Interv Radiol. 2015;21(5):368–75. https://doi.org/10.5152/dir.2015.14427.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Meads C, Davenport C, Małysiak S, et al. Evaluating PET-CT in the detection and management of recurrence cervical cancer: systematic reviews of diagnostic accuracy and subjective elicitation. BJOG. 2014;121(4):398–407. https://doi.org/10.1111/1471-0528.12488.

    Article  CAS  PubMed  Google Scholar 

  58. Morris M, Eifel PJ, Lu J, et al. Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer. N Engl J Med. 1999;340(15):1137–43. https://doi.org/10.1056/NEJM199904153401501.

    Article  CAS  PubMed  Google Scholar 

  59. Peters M, de Leeuw AAC, Nomden CN, et al. Risk factors for nodal failure after radiochemotherapy and image-guided brachytherapy in locally advanced cervical cancer: an EMBRACE analysis. Radiother Oncol. 2021;163:150–8. https://doi.org/10.1016/j.radonc.2021.08.020.

    Article  PubMed  Google Scholar 

  60. Bukkems LJH, Jurgenliemk-Schulz IM, van der Leij F, Peters M, Gerestein CG, Zweemer RP. The impact of para-aortic lymph node irradiation on disease-free survival in patients with cervical cancer: a systematic review and meta-analysis. Clin Transl Radiat Oncol. 2022;35:97–103. https://doi.org/10.1016/j.ctro.2022.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pötter R, Tanderup K, Kirisits C, The EMBRACE Collaborative Group, et al. The EMBRACE II study: the outcome and prospect of two decades of evolution within the GEC-ESTRO GYN working group and the EMBRACE studies. Clin Transl Radiat Oncol. 2018;11(9):48–60. https://doi.org/10.1016/j.ctro.2018.01.001.

    Article  Google Scholar 

  62. Tanderup K, Lindegaard JC, Kirisits C, et al. Image guided adaptive brachytherapy in cervix cancer: a new paradigm changing clinical practice and outcome. Radiother Oncol. 2016;120(3):365–9. https://doi.org/10.1016/j.radonc.2016.08.007.

    Article  PubMed  Google Scholar 

  63. Grover S, Harkenrider MM, Cho LP, et al. Image guided cervical brachytherapy: 2014 survey of the American Brachytherapy Society. Int J Radiat Oncol Biol Phys. 2014;94:598–60. https://doi.org/10.1016/j.ijrobp.2015.11.024.

    Article  Google Scholar 

  64. Pötter R, Georg P, Dimopoulos JCA, et al. Clinical outcome of protocol-based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer. Radiother Oncol. 2011;100:116–23. https://doi.org/10.1016/j.radonc.2011.07.012.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Potter R, Haie-Meder C, Van Limbergen E, et al. GEC ESTRO Working Group. Recommendations from Gynaecological (GYN) GEC ESTO Working Group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol. 2006;78(1):67–77. https://doi.org/10.1016/j.radonc.2005.11.014.

    Article  PubMed  Google Scholar 

  66. Nag S, Cardenes H, Chang S, et al. Image-guided brachytherapy working group. Proposed guidelines for image-based intracavitary brachytherapy for cervical carcinoma: report from image-guided brachytherapy working group. Int J Radiat Oncol Biol Phys. 2004;60(4):1160–72. https://doi.org/10.1016/j.ijrobp.2004.04.032.

    Article  PubMed  Google Scholar 

  67. Berger T, Seppenwoolde Y, Pötter R, EMBRACE Collaborative Group, et al. Importance of technique, target selection, contouring, dose prescription, and dose-planning in external beam radiation therapy for cervical cancer: evolution of practice from EMBRACE-I to II. Int J Radiat Oncol Biol Phys. 2019;104(4):885–94. https://doi.org/10.1016/j.ijrobp.2019.03.020.

    Article  PubMed  Google Scholar 

  68. Hariteportunkel NH, Nath SK, Scanderbeg D, Saenz C, Yashar CM. Evaluation of intra-and inter-fraction movement of the cervix during intensity modulated radiation therapy. Radiother Oncol. 2011;98(3):347–51. https://doi.org/10.1016/j.radonc.2010.11.015.

    Article  Google Scholar 

  69. Lim K, Small W, Portelance L, et al. For the GYN IMRT consortium consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer. Int J Rad Oncol Biol Phys. 2011;79(2):348–55. https://doi.org/10.1016/ijrobp.2009.10.075.

    Article  Google Scholar 

  70. White I, Mcquaid E, Godwin E, et al. Image-guided adaptive external beam radiotherapy (EBRT) planning for cervical cancer—a comparison of offline, online and MRI-guided techniques to reduce organ at risk (OAR) dose using a dose accumulation model. Int J Radiat Oncol Biol Phys. 2019;105(1):S250–1.

    Article  Google Scholar 

  71. Kozak M, Koenig JL, von Eyben R, Kidd EA. Less than whole uterus irradiation for locally advanced cervical cancer maintains locoregional control and decreases radiation dose to bowel. Pract Oncol Radiother. 2018;9(2):e164–71. https://doi.org/10.1016/j.prro.2018.10.009.

    Article  Google Scholar 

  72. Buschmann M, Majercakova K, Sturdza A, et al. Image guided adaptive external beam radiation therapy for cervix cancer: evaluation of a clinically implemented plan-of-the-day technique. Med Phys. 2018;28(3):184–95. https://doi.org/10.1016/j.zemedi.2017.09.004.

    Article  Google Scholar 

  73. Mendez LC, Raziee H, Davidson M, et al. Should we embrace hypofractionated radiotherapy for cervical cancer? A technical note on management during COVID-19 pandemic. Radiother Oncol. 2020;148:270–3. https://doi.org/10.1016/j.radonc.2020.05.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hes J, Van Lier A, De Leeuw A, Kroon P, DeGroot-van Breugel E, Jurgenkiemk-Schulz I. OC-0713: MR-Linac boosts for patients with cervix cancer ineligible for brachytherapy; preliminary experience. Radiother Oncol. 2020;152:S402–3. https://doi.org/10.1016/S0167-8140(21)00735-09.

    Article  Google Scholar 

  75. Hadi I, Eze C, Schönecker S, von Bestenbostel R, et al. MR-guided SBRT boost for patients with locally advanced or recurrent gynecological cancers ineligible for brachytherapy: feasibility and early clinical experience. Radiat Oncol. 2022;17(8):1–9. https://doi.org/10.1186/s13014-022-01981-z.

    Article  CAS  Google Scholar 

  76. Mahmoud O, Kilic S, Khan AJ, Beriwal S, Small W. External beam techniques to boost cervical cancer when brachytherapy is not an option—theories and applications. Ann Transl Med. 2017;5(10):5. https://doi.org/10.21037/atm.2017.03.102.

    Article  CAS  Google Scholar 

  77. Kilic S, Cracchiolo B, Mahmoud O. Non-brachytherapy alternatives in cervical cancer radiotherapy: why not? Appl Radiat Oncol. 2015;4:11–7.

    Article  Google Scholar 

  78. Albuquerque K, Tumati V, Lea J, Ahn C, Richardson D, Miller D, Timmerman R. A phase II trial of stereotactic ablative radiation therapy as a boost for locally advanced cervical cancer. Int J Radiat Oncol Biol Phys. 2020;106(3):464–71. https://doi.org/10.1016/j.ijrobp.2019.10.042.

    Article  CAS  PubMed  Google Scholar 

  79. Tanderup K, Fokdal LY, Sturdza A, et al. Effect of tumor dose, volume and overall treatment time on local control after radiochemotherapy including MRI guided brachytherapy of locally advanced cervical cancer. Radiother Oncol. 2016;120(3):441–6. https://doi.org/10.1016/j.radonc.2017.01.022.

    Article  PubMed  Google Scholar 

  80. Han K, Milosevic M, Fyles A, Pintilie M, Viswanathan AN. Trends in the utilization of brachytherapy in cervical cancer in the United States. Int J Radiat Oncol Biol Phys. 2013;87(1):111–9. https://doi.org/10.1016/j.ijrobp.2013.05.033.

    Article  PubMed  Google Scholar 

  81. Holschneider CH, Petereit DG, Chu C, et al. Brachytherapy: a critical component of primary radiation therapy for cervical cancer: from the Society of Gynecologic Oncology (SGO) and the American Brachytherapy Society (ABS). Gynecol Oncol. 2019;152(3):540–7. https://doi.org/10.1016/j.ygyno.2018.10.016.

    Article  PubMed  Google Scholar 

  82. Ko HC, Huang JY, Miller JR, et al. Novel use of ViewRay MRI guidance for high-dose-rate brachytherapy in the treatment of cervical cancer. Brachytherapy. 2018;17:680–8. https://doi.org/10.1016/j.brachy.2018.04.005.

    Article  PubMed  Google Scholar 

  83. Babar S, Rockall A, Goode A, Shepherd J, Reznek R. Magnetic resonance imaging appearances of recurrent cervical carcinoma. Int J Gynecol Cancer. 2007;17(3):637–45. https://doi.org/10.1111/j.1525-1438.2007.00849.x.

    Article  CAS  PubMed  Google Scholar 

  84. Pervin S, Ruma FI, Rahman K, et al. Adjuvant hysterectomy in patients with residual disease after radiation for locally advanced cervical cancer: a prospective longitudinal study. J Glob Oncol. 2019;4:157. https://doi.org/10.1200/JGO.18.00157.

    Article  Google Scholar 

  85. Parikh PJ, Lee P, Low DA, et al. Multi-institutional phase 2 trial of ablative 5-fraction stereotactic MR-guided on 2 table adaptive radiation therapy (SMART) for inoperable pancreatic cancer. Int J Radiat Biol Oncol Phys. 2023;117:799–808. https://doi.org/10.1016/j.ijrobp.2023.05.023.

    Article  Google Scholar 

  86. Yoo S, Hegarty SE, Mishra MV, Patel N, Cantrell LA, Showalter TN. Definitive radiation therapy for stage I–II endometrial cancer: an observational study of nonoperative management. Am J Clin Oncol. 2017;40(6):582–9. https://doi.org/10.1097/COC.0000000000000204.

    Article  PubMed  Google Scholar 

  87. Podzielinski I, Randall ME, Breheny PJ, et al. Primary radiation therapy for medically inoperable patients with clinical stage I and II endometrial carcinoma. Gynecol Oncol. 2012;124(1):36–41. https://doi.org/10.1016/j.ygyno.2011.09.022.

    Article  PubMed  Google Scholar 

  88. Nag S, Erickson B, Parikh S, Gupta N, Varia M, Glasgow G. The American Brachytherapy Society recommendations for high-dose-rate brachytherapy for carcinoma of the endometrium. Int J Radiat Oncol Biol Phys. 2000;48(3):779–90. https://doi.org/10.1016/s0360-3016(00)00689-1.

    Article  CAS  PubMed  Google Scholar 

  89. van der Steen-Banasik E, Christiaens M, Shash E, et al. Systemic review: radiation therapy alone in medical non-operable endometrial carcinoma. Eur J Cancer. 2016;65:172–81. https://doi.org/10.1016/j.ejca.2016.07.005.

    Article  PubMed  Google Scholar 

  90. van der Steen-Banasik E. Primary brachytherapy as a radical treatment for endometrial carcinoma. J Contemp Brachytherapy. 2014;6(1):106–12. https://doi.org/10.5114/jcb.2014.42028.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Weitmann HD, Pötter R, Waldhäusl C, Nechvile E, Kirisits C, Knocke TH. Pilot study in the treatment of endometrial carcinoma with 3D image-based high-dose-rate brachytherapy using modified Heyman packing: clinical experience and dose-volume histogram analysis. Int J Radiat Oncol Biol Phys. 2005;62(2):468–78. https://doi.org/10.1016/j.ijrobp.2004.10.013.

    Article  PubMed  Google Scholar 

  92. Hardarson HA, Heidemann LN, dePont CR, Mogensen O, Jochumsen KM. Vaginal vault recurrences of endometrial cancer in non-irradiated patients—radiotherapy or surgery. Gynecol Oncol Rep. 2015;11:26–30. https://doi.org/10.1016/j.gore.2015.01.002.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Pai HH, Souhami L, Clark BG, Roman T. Isolated vaginal recurrences in endometrial carcinoma: treatment results using high-dose-rate intracavitary brachytherapy and external beam radiotherapy. Gynecol Oncol. 1997;66(2):300–7. https://doi.org/10.1006/gyno.1997.4752.

    Article  CAS  PubMed  Google Scholar 

  94. Kamrava M, Sushil Beriwal S, Erickson B, et al. American Brachytherapy Society recurrent carcinoma of the endometrium task force patterns of care and review of the literature. Brachytherapy. 2017;16(6):1129–43. https://doi.org/10.1016/j.brachy.2017.07.012.

    Article  PubMed  Google Scholar 

  95. Weitmann HD, Knocke TH, Waldhäusl C, Pötter R. Ultrasound-guided interstitial brachytherapy in the treatment of advanced vaginal recurrences from cervical and endometrial carcinoma. Strahlenther Onkol. 2006;182(2):86–95. https://doi.org/10.1007/s00066-006-1420-4.

    Article  PubMed  Google Scholar 

  96. Fokdal L, Tanderup K, Nielsen SK, et al. Image and laparoscopic guided interstitial brachytherapy for locally advanced primary or recurrent gynaecological cancer using the adaptive GEC ESTRO target concept. Radiother Oncol. 2011;100(3):473–9. https://doi.org/10.1016/j.radonc.2011.08.016.

    Article  PubMed  Google Scholar 

  97. Hellman S, Weichselbaum RR. Oligometastasis. J Clin Oncol. 1995;13:8–10. https://doi.org/10.1200/JCO.1995.13.1.8.

    Article  CAS  PubMed  Google Scholar 

  98. Kunos CA, Brindle J, Waggoner S, et al. Phase II clinical trial of robotic stereotactic body radiosurgery for metastatic gynecologic malignancies. Front Oncol. 2012;2(181):1–6. https://doi.org/10.3389/fonc.2012.00181.

    Article  Google Scholar 

  99. Mesko S, Sandler K, Cohen J, Konecny G, Steinberg M, Kamrava M. Clinical outcomes for stereotactic ablative radiotherapy in oligometastatic and oligoprogressive gynecological malignancies. Int J Gynecol Cancer. 2017;27:403–8. https://doi.org/10.1097/IGC.0000000000000869.

    Article  PubMed  Google Scholar 

  100. Lazzari R, Ronchi S, Gandini S, et al. Stereotactic body radiation therapy for oligometastatic ovarian cancer: a step toward a drug holiday. Int J Radiat Oncol Biol Phys. 2018;101:650–60. https://doi.org/10.1016/j.ijrobp.2018.03.058.

    Article  PubMed  Google Scholar 

  101. Macchia G, Lazzari R, Colombo N, et al. A large, multicenter, retrospective study on efficacy and safety of stereotactic body radiotherapy (SBRT) in oligometastatic ovarian cancer (MITO RT1 study): a collaboration of MITO, AIRO GYN, and MaNGO groups. Oncologist. 2020;25(2):e311–20. https://doi.org/10.1634/theoncologist.2019-0309.

    Article  PubMed  Google Scholar 

  102. Chiva LM, Lapuente F, González-Cortijo L, et al. Surgical treatment of recurrent cervical cancer: state of the art and new achievements. Gynecol Oncol. 2008;110(3 Suppl 2):S60–6. https://doi.org/10.1016/j.ygyno.2008.05.024.

    Article  PubMed  Google Scholar 

  103. Kubota H, Tsujino K, Sulaiman NS, et al. Comparison of salvage therapies for isolated paraaortic lymph node recurrence in patients with uterine cervical cancer after definitive treatment. Radiat Oncol. 2019;14:236. https://doi.org/10.1186/s13014-019-1442-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jereczek-Fossa BA, Ronchi S, Orecchia R. Is stereotactic body radiotherapy (SBRT) in lymph node oligometastatic patients feasible and effective? Rep Pract Oncol Radiother. 2015;20:472–83. https://doi.org/10.1016/j.rpor.2014.10.004.

    Article  PubMed  Google Scholar 

  105. Ning MS, Ahobila V, Jhingran A, et al. Outcomes and patterns of relapse after definitive radiation therapy for oligometastatic cervical cancer. Gynecol Oncol. 2018;148:132–8. https://doi.org/10.1016/j.ygyno.2017.10.017.

    Article  PubMed  Google Scholar 

  106. Jadon R, Higgins E, Hanna L, Evans M, Coles B, Staffurth J. A systematic review of dose-volume predictors and constraints for late bowel toxicity following pelvic radiotherapy. Radiat Oncol. 2019;14(1):57. https://doi.org/10.1186/s13014-019-1262-8.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Onderdonk BE, Chmura SJ. The Yin and Yang of cytoreductive SBRT in oligometastases and beyond. Front Oncol. 2019;9:1–6. https://doi.org/10.3389/fonc.2019.00706.

    Article  Google Scholar 

  108. Park HJ, Chang AR, Seo Y, et al. Stereotactic body radiotherapy for recurrent or oligometastatic uterine cervix cancer: a cooperative study of the Korean Radiation Oncology Group (KROG 14-11). Anticancer Res. 2015;35(9):5103–10.

    PubMed  Google Scholar 

  109. Matsushita H, Jingu K, Umezawa R, et al. Stereotactic radiotherapy for oligometastases in lymph nodes—a review. Technol Cancer Res Treat. 2018;17:1–8. https://doi.org/10.1177/1533033818803597.

    Article  Google Scholar 

  110. Loi M, Frelinghuysen M, Klass ND, et al. Locoregional control and survival after lymph node SBRT in oligometastatic disease. Clin Exp Metastasis. 2018;35:625–33. https://doi.org/10.1007/s10585-018-9922-x.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Iftode C, DʼAgostino GR, Tozzi A, et al. Stereotactic body radiation therapy in oligometastatic ovarian cancer: a promising therapeutic approach. Int J Gynecol Cancer. 2018;28:1507–13. https://doi.org/10.1097/IGC.0000000000001324.

    Article  PubMed  Google Scholar 

  112. Kowalchuk RO, Waters MR, Richardson KM, et al. Stereotactic body radiation therapy in the treatment of ovarian cancer. Radiat Oncol. 2020;15:1–10. https://doi.org/10.1186/s13014-020-01564-w.

    Article  Google Scholar 

  113. Trippa F, Draghini L, di Marzo A, et al. Long-term palliation of lymph node oligometastatic ovarian carcinoma after repeated stereotactic body radiotherapy. Case Rep. 2020;106:6. https://doi.org/10.1177/0300891620952852.

    Article  Google Scholar 

  114. Heike L, Kashani R, Robinson C, et al. Phase I trial of stereotactic MR-guided online adaptive radiation therapy (SMART) for the treatment of oligometastatic or unresectable primary malignancies of the abdomen. Radiother Oncol. 2018;126(3):519–26. https://doi.org/10.1016/j.radonc.2017.11.032.

    Article  Google Scholar 

  115. Macchia G, Jereczek-Fossa BA, et al. Efficacy and safety of stereotactic body radiotherapy (SBRT) in oligometastatic/persistent/recurrent ovarian cancer: a prospective, multicenter phase II study (MITO-RT3/RAD). Int J Gynecol Cancer. 2022;32(7):939–43. https://doi.org/10.1136/ijgc-2021-002709.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorraine Portelance .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Portelance, L., Jürgenliemk-Schulz, I., Padgett, K.R., Castillo, R.P., van Lier, A. (2024). Considerations for Using MR Linac for the Treatment of Patients with Gynecologic Cancer: A Practical Guide and Early Clinical Experience. In: Das, I.J., Alongi, F., Yadav, P., Mittal, B.B. (eds) A Practical Guide to MR-Linac. Springer, Cham. https://doi.org/10.1007/978-3-031-48165-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48165-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48164-2

  • Online ISBN: 978-3-031-48165-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics