Skip to main content

Breast Radiotherapy Using MR-Linac

  • Chapter
  • First Online:
A Practical Guide to MR-Linac

Abstract

Pursuing the aim to reduce long-term treatment-related toxicity, current research in breast radiotherapy focuses on reduction of the target volumes. Adjuvant partial breast irradiation instead of whole breast irradiation already represents a standard option for patients with low-risk breast cancer. Magnetic resonance (MR)-guided radiotherapy performed on an MR-Linac offers improved breast tissue and tumor visibility as well as the possibility of a daily online treatment adaptation. This might allow for a further reduction of the irradiated volumes and facilitate neoadjuvant treatment. In this chapter, we discuss partial breast radiotherapy performed on an MR-Linac, including its rationale, advantages, and challenging aspects, with a focus on neoadjuvant partial breast irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van der Leij F, et al. Target volume delineation in external beam partial breast irradiation: less inter-observer variation with preoperative-compared to postoperative delineation. Radiother Oncol. 2014;110(3):467–70.

    Article  PubMed  Google Scholar 

  2. E.E.C.I. System. J.R. Centre, Editor. 2020. https://ecis.jrc.ec.europa.eu/pdf/Breast_cancer_factsheet-Oct_2020.pdf.

  3. U.S. Cancer Statistics, T.O.F.C.S.C.f.D.C.a.P. Cancer statistics at a glance, 2019. https://gis.cdc.gov/Cancer/USCS/#/AtAGlance/.

  4. World Cancer Research. 2022. https://www.wcrf.org/cancer-trends/breast-cancer-statistics.

  5. Siegel RL, et al. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.

    Article  PubMed  Google Scholar 

  6. Eurostat. 2023. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Causes_of_death_statistics#Major_causes_of_death_in_the_EU_in_2017.

  7. Arnold M, et al. Current and future burden of breast cancer: global statistics for 2020 and 2040. Breast. 2022;66:15–23.

    Article  PubMed  PubMed Central  Google Scholar 

  8. DeSantis CE, et al. Breast cancer statistics, 2019. CA Cancer J Clin. 2019;69(6):438–51.

    Article  PubMed  Google Scholar 

  9. Kunkler IH, et al. Breast-conserving surgery with or without irradiation in early breast cancer. N Engl J Med. 2023;388(7):585–94.

    Article  PubMed  Google Scholar 

  10. Lee BM, et al. Hypofractionated radiotherapy dose scheme and application of new techniques are associated to a lower incidence of radiation pneumonitis in breast cancer patients. Front Oncol. 2020;10:124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yeboa DN, Evans SB. Contemporary breast radiotherapy and cardiac toxicity. Semin Radiat Oncol. 2016;26(1):71–8.

    Article  PubMed  Google Scholar 

  12. Taylor C, et al. Estimating the risks of breast cancer radiotherapy: evidence from modern radiation doses to the lungs and heart and from previous randomized trials. J Clin Oncol. 2017;35(15):1641–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. NCCN Clinical Practice Guidelines in Oncology, Breast Cancer, N.C.C. Network, Editor. 2023. p. BINV-I.

    Google Scholar 

  14. Interdisziplinäre S3-Leitlinie für die Früherkennung, Diagnostik, Therapie und Nachsorge des Mammakarzinoms. 2021. p. 150.

    Google Scholar 

  15. Radiologists TRCo. Postoperative radiotherapy for breast cancer: UK consensus statements. 2016, update 2021.

    Google Scholar 

  16. Meattini I, et al. Accelerated partial-breast irradiation compared with whole-breast irradiation for early breast cancer: long-term results of the randomized phase III APBI-IMRT-Florence Trial. J Clin Oncol. 2020;38(35):4175–83.

    Article  PubMed  Google Scholar 

  17. Coles CE, et al. Partial-breast radiotherapy after breast conservation surgery for patients with early breast cancer (UK IMPORT LOW trial): 5-year results from a multicentre, randomised, controlled, phase 3, non-inferiority trial. Lancet. 2017;390(10099):1048–60.

    Article  PubMed  PubMed Central  Google Scholar 

  18. De-Colle C, et al. Analysis of the electron-stream effect in patients treated with partial breast irradiation using the 1.5 T MR-linear accelerator. Clin Transl Radiat Oncol. 2021;27:103–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hepel JT, et al. Toxicity of three-dimensional conformal radiotherapy for accelerated partial breast irradiation. Int J Radiat Oncol Biol Phys. 2009;75(5):1290–6.

    Article  PubMed  Google Scholar 

  20. Jagsi R, et al. Unacceptable cosmesis in a protocol investigating intensity-modulated radiotherapy with active breathing control for accelerated partial-breast irradiation. Int J Radiat Oncol Biol Phys. 2010;76(1):71–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Civil YA, et al. Preoperative partial breast irradiation in patients with low-risk breast cancer: a systematic review of literature. Ann Surg Oncol. 2023;30:3263.

    Article  PubMed  PubMed Central  Google Scholar 

  22. van Mourik AM, et al. Multiinstitutional study on target volume delineation variation in breast radiotherapy in the presence of guidelines. Radiother Oncol. 2010;94(3):286–91.

    Article  PubMed  Google Scholar 

  23. Landis DM, et al. Variability among breast radiation oncologists in delineation of the postsurgical lumpectomy cavity. Int J Radiat Oncol Biol Phys. 2007;67(5):1299–308.

    Article  PubMed  Google Scholar 

  24. Al-Hammadi N, et al. MRI reduces variation of contouring for boost clinical target volume in breast cancer patients without surgical clips in the tumour bed. Radiol Oncol. 2017;51(2):160–8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jolicoeur M, et al. Localization of the surgical bed using supine magnetic resonance and computed tomography scan fusion for planification of breast interstitial brachytherapy. Radiother Oncol. 2011;100(3):480–4.

    Article  PubMed  Google Scholar 

  26. Mast M, et al. Target volume delineation in breast conserving radiotherapy: are co-registered CT and MR images of added value? Radiat Oncol. 2014;9:65.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pogson EM, et al. Comparison of magnetic resonance imaging and computed tomography for breast target volume delineation in prone and supine positions. Int J Radiat Oncol Biol Phys. 2016;96(4):905–12.

    Article  PubMed  Google Scholar 

  28. Giezen M, et al. MRI- versus CT-based volume delineation of lumpectomy cavity in supine position in breast-conserving therapy: an exploratory study. Int J Radiat Oncol Biol Phys. 2012;82(4):1332–40.

    Article  PubMed  Google Scholar 

  29. Den Hartogh MD, et al. Post-lumpectomy CT-guided tumor bed delineation for breast boost and partial breast irradiation: can additional pre- and postoperative imaging reduce interobserver variability? Oncol Lett. 2015;10(5):2795–801.

    Article  Google Scholar 

  30. Sabine B, Giovanna D, Peter P, Clara J, Bert P, John K. Open low-field magnetic resonance (MR) versus CT scanner (CT) imaging in breast radiotherapy treatment planning. Int J Radiat Oncol Biol Phys. 2005;63:S232–3.

    Article  Google Scholar 

  31. Kirby AM, et al. Tumor bed delineation for partial breast and breast boost radiotherapy planned in the prone position: what does MRI add to X-ray CT localization of titanium clips placed in the excision cavity wall? Int J Radiat Oncol Biol Phys. 2009;74(4):1276–82.

    Article  PubMed  Google Scholar 

  32. den Hartogh MD, et al. MRI and CT imaging for preoperative target volume delineation in breast-conserving therapy. Radiat Oncol. 2014;9:63.

    Article  Google Scholar 

  33. Tersteeg RJ, et al. Changes in excision cavity volume: prediction of the reduction in absolute volume during breast irradiation. Int J Radiat Oncol Biol Phys. 2009;74(4):1181–5.

    Article  PubMed  Google Scholar 

  34. Topolnjak R, et al. Breast-conserving therapy: radiotherapy margins for breast tumor bed boost. Int J Radiat Oncol Biol Phys. 2008;72(3):941–8.

    Article  PubMed  Google Scholar 

  35. Jeon SH, et al. Seroma change during magnetic resonance imaging-guided partial breast irradiation and its clinical implications. Radiat Oncol. 2017;12(1):103.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Murray Brunt A, et al. Hypofractionated breast radiotherapy for 1 week versus 3 weeks (FAST-forward): 5-year efficacy and late normal tissue effects results from a multicentre, non-inferiority, randomised, phase 3 trial. Lancet. 2020;395(10237):1613–26.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hoekstra N, et al. Intrafraction motion during partial breast irradiation depends on treatment time. Radiother Oncol. 2021;159:176–82.

    Article  PubMed  Google Scholar 

  38. Polgár C, et al. Patient selection for accelerated partial-breast irradiation (APBI) after breast-conserving surgery: recommendations of the Groupe Européen de Curiethérapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) breast cancer working group based on clinical evidence (2009). Radiother Oncol. 2010;94(3):264–73.

    Article  PubMed  Google Scholar 

  39. Correa C, et al. Accelerated partial breast irradiation: executive summary for the update of an ASTRO evidence-based consensus statement. Pract Radiat Oncol. 2017;7(2):73–9.

    Article  PubMed  Google Scholar 

  40. Acharya S, et al. Magnetic resonance image guided radiation therapy for external beam accelerated partial-breast irradiation: evaluation of delivered dose and intrafractional cavity motion. Int J Radiat Oncol Biol Phys. 2016;96(4):785–92.

    Article  PubMed  Google Scholar 

  41. Groot Koerkamp ML, et al. Optimizing MR-guided radiotherapy for breast cancer patients. Front Oncol. 2020;10:1107.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Moore-Palhares D, et al. Clinical implementation of magnetic resonance imaging simulation for radiation oncology planning: 5 year experience. Radiat Oncol. 2023;18(1):27.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Charaghvandi KR, et al. Single dose partial breast irradiation using an MRI linear accelerator in the supine and prone treatment position. Clin Transl Radiat Oncol. 2019;14:1–7.

    CAS  PubMed  Google Scholar 

  44. Groot Koerkamp ML, et al. Prone vs. supine accelerated partial breast irradiation on an MR-Linac: a planning study. Radiother Oncol. 2021;165:193–9.

    Article  PubMed  Google Scholar 

  45. Ng J, Pennell R, Formenti SC. The initial experience of MRI-guided precision prone breast irradiation with daily adaptive planning in treating early stage breast cancer patients. Front Oncol. 2022;12:1048512.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Paulson ES, et al. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning. Med Phys. 2015;42(1):28–39.

    Article  PubMed  Google Scholar 

  47. Ahn KH, et al. MRI guidance for accelerated partial breast irradiation in prone position: imaging protocol design and evaluation. Int J Radiat Oncol Biol Phys. 2009;75(1):285–93.

    Article  PubMed  Google Scholar 

  48. Batumalai V, et al. Assessment of MRI image quality for various setup positions used in breast radiotherapy planning. Radiother Oncol. 2016;119(1):57–60.

    Article  PubMed  Google Scholar 

  49. Liney GP, Moerland MA. Magnetic resonance imaging acquisition techniques for radiotherapy planning. Semin Radiat Oncol. 2014;24(3):160–8.

    Article  PubMed  Google Scholar 

  50. Vasmel JE, Koerkamp G, Kirby A, Russell N, Shaitelman S, Vesprini D, et al. Evaluation of MRI-based guidelines for contouring tumors for preoperative partial breast irradiation. Radiother Oncol. 2019;133:S719.

    Article  Google Scholar 

  51. Horton JK, et al. Preoperative single-fraction partial breast radiation therapy: a novel phase 1, dose-escalation protocol with radiation response biomarkers. Int J Radiat Oncol Biol Phys. 2015;92(4):846–55.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Guidolin K, et al. Stereotactic image-guided neoadjuvant ablative single-dose radiation, then lumpectomy, for early breast cancer: the SIGNAL prospective single-arm trial of single-dose radiation therapy. Curr Oncol. 2019;26(3):e334–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mouawad M, et al. Reducing the dose of gadolinium-based contrast agents for DCE-MRI guided SBRT: the effects on inter and intra observer variability for preoperative target volume delineation in early stage breast cancer patients. Radiother Oncol. 2019;131:60–5.

    Article  CAS  PubMed  Google Scholar 

  54. Vasmel JE, et al. Consensus on contouring primary breast tumors on MRI in the setting of neoadjuvant partial breast irradiation in trials. Pract Radiat Oncol. 2020;10(6):e466–74.

    Article  PubMed  Google Scholar 

  55. The Institute of Cancer Research, London. 2013. https://www.icr.ac.uk/media/docs/default-source/default-document-library/import-high-planning-pack-version-4-0-final-23052013-edited.pdf?sfvrsn=6d2c2169_0.

  56. Tan IZ, Mitchell A, McNair H, Dunlop A, Herbert T, Nartey J, Lawes R, O’Connell N, Cooper D, De-Colle C, Diaz J, Donovan EK, Han K, Hahn E, Nelms B, Russell N, Kirby AM, on behalf of the MR-Linac Consortium Breast Tumour Working Group. A multicentre study of clinical to planning target volume margins for adjuvant partial breast irradiation delivered on the 1.5 T MR-Linear accelerator. Int J Radiat Oncol Biol Phys. 2023;117(2):e725.

    Article  Google Scholar 

  57. Ginn JS, et al. Characterization of spatial distortion in a 0.35 T MRI-guided radiotherapy system. Phys Med Biol. 2017;62(11):4525–40.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fransson A, Andreo P, Pötter R. Aspects of MR image distortions in radiotherapy treatment planning. Strahlenther Onkol. 2001;177(2):59–73.

    Article  CAS  PubMed  Google Scholar 

  59. Walker A, et al. MRI distortion: considerations for MRI based radiotherapy treatment planning. Australas Phys Eng Sci Med. 2014;37(1):103–13.

    Article  PubMed  Google Scholar 

  60. Charaghvandi RK, et al. Redefining radiotherapy for early-stage breast cancer with single dose ablative treatment: a study protocol. BMC Cancer. 2017;17(1):181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Whiteside L, et al. To see or not to see: evaluation of magnetic resonance imaging sequences for use in MR-Linac-based radiotherapy treatment. J Med Imaging Radiat Sci. 2022;53(3):362–73.

    Article  PubMed  Google Scholar 

  62. Meattini I, et al. European Society for Radiotherapy and Oncology Advisory Committee in Radiation Oncology Practice consensus recommendations on patient selection and dose and fractionation for external beam radiotherapy in early breast cancer. Lancet Oncol. 2022;23(1):e21–31.

    Article  PubMed  Google Scholar 

  63. Livi L, et al. Accelerated partial breast irradiation using intensity-modulated radiotherapy versus whole breast irradiation: 5-year survival analysis of a phase 3 randomised controlled trial. Eur J Cancer. 2015;51(4):451–63.

    Article  PubMed  Google Scholar 

  64. Weinfurtner RJ, et al. Quantitative changes in intratumoral habitats on MRI correlate with pathologic response in early-stage ER/PR+ HER2− breast cancer treated with preoperative stereotactic ablative body radiotherapy. J Breast Imaging. 2022;4(3):273–84.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bosma SCJ, et al. Five-year results of the preoperative accelerated partial breast irradiation (PAPBI) trial. Int J Radiat Oncol Biol Phys. 2020;106(5):958–67.

    Article  PubMed  Google Scholar 

  66. Nichols E, et al. Preoperative accelerated partial breast irradiation for early-stage breast cancer: preliminary results of a prospective, phase 2 trial. Int J Radiat Oncol Biol Phys. 2017;97(4):747–53.

    Article  PubMed  Google Scholar 

  67. Tiberi D, et al. Tumour response 3 months after neoadjuvant single-fraction radiotherapy for low-risk breast cancer. Curr Oncol. 2020;27(3):155–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vasmel JE, et al. Tumor response after neoadjuvant magnetic resonance guided single ablative dose partial breast irradiation. Int J Radiat Oncol Biol Phys. 2020;106(4):821–9.

    Article  CAS  PubMed  Google Scholar 

  69. Vanderwalde NA, et al. Phase 2 study of pre-excision single-dose intraoperative radiation therapy for early-stage breast cancers: 6-year update with application of the ASTRO accelerated partial breast irradiation consensus statement criteria. Cancer. 2013;119(9):1736–43.

    Article  PubMed  Google Scholar 

  70. Meattini I, et al. Preoperative robotic radiosurgery for early breast cancer: results of the phase II ROCK trial (NCT03520894). Clin Transl Radiat Oncol. 2022;37:94–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zerella MA, et al. Single fraction ablative preoperative radiation treatment for early-stage breast cancer: the CRYSTAL study—a phase I/II clinical trial protocol. BMC Cancer. 2022;22(1):358.

    Article  PubMed  PubMed Central  Google Scholar 

  72. van den Bongard HJGD. Single-dose preoperative partial breast irradiation in low-risk breast cancer patients (ABLATIVE-2). ClinicalTrials.gov Identifier: NCT05350722.

  73. Brackstone M. Stereotactic image-guided neoadjuvant ablative radiation then lumpectomy (SIGNAL 2). ClinicalTrials.gov Identifier: NCT02212860.

  74. Yassa M. Single pre-operative radiation therapy—with delayed or no surgery (SPORT-DNS). ClinicalTrials.gov Identifier: NCT05217966.

  75. Currey A. MRI-based preoperative accelerated partial breast irradiation. ClinicalTrials.gov Identifier: NCT02728076.

  76. Shaitelman SF. Radiation therapy before surgery in treating patients with hormone receptor positive, HER2 negative breast cancer. ClinicalTrials.gov Identifier: NCT03359954.

  77. Wapnir I. Phase 2 surgical excision vs neoadjuvant radiotherapy + delayed surgical excision of ductal carcinoma (NORDIS). ClinicalTrials.gov Identifier: NCT03909282.

  78. Rahimi A. A phase I dose escalation study of single fraction ablative pre-operative partial breast (S-PBI) for early stage breast cancer. ClinicalTrials.gov Identifier: NCT04040569.

  79. Takita C. Study for selected early stage breast cancer (SABER). ClinicalTrials.gov Identifier: NCT04360330.

  80. Cedrone L. SBRT in early breast cancer in elderly women. ClinicalTrials.gov Identifier: NCT05071105.

  81. Blitzblau R. Preoperative single-fraction radiotherapy in early stage breast cancer. ClinicalTrials.gov Identifier: NCT02482376.

  82. Charaghvandi RK, et al. Treatment constraints for single dose external beam preoperative partial breast irradiation in early-stage breast cancer. Clin Transl Radiat Oncol. 2017;6:7–14.

    PubMed  PubMed Central  Google Scholar 

  83. Nachbar M, et al. Partial breast irradiation with the 1.5 T MR-Linac: first patient treatment and analysis of electron return and stream effects. Radiother Oncol. 2020;145:30–5.

    Article  PubMed  Google Scholar 

  84. Park JM, et al. Air-electron stream interactions during magnetic resonance IGRT: skin irradiation outside the treatment field during accelerated partial breast irradiation. Strahlenther Onkol. 2018;194(1):50–9.

    Article  PubMed  Google Scholar 

  85. Hackett SL, et al. Spiraling contaminant electrons increase doses to surfaces outside the photon beam of an MRI-linac with a perpendicular magnetic field. Phys Med Biol. 2018;63(9):095001.

    Article  CAS  PubMed  Google Scholar 

  86. van Heijst TC, et al. MR-guided breast radiotherapy: feasibility and magnetic-field impact on skin dose. Phys Med Biol. 2013;58(17):5917–30.

    Article  PubMed  Google Scholar 

  87. Raaijmakers AJ, Raaymakers BW, Lagendijk JJ. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons. Phys Med Biol. 2005;50(7):1363–76.

    Article  CAS  PubMed  Google Scholar 

  88. Kim A, et al. Magnetic field dose effects on different radiation beam geometries for hypofractionated partial breast irradiation. J Appl Clin Med Phys. 2017;18(6):62–70.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Prott FJ, et al. Effect of distortions and asymmetry in MR images on radiotherapeutic treatment planning. Int J Cancer. 2000;90(1):46–50.

    Article  CAS  PubMed  Google Scholar 

  90. Walker A, et al. MRI geometric distortion: impact on tangential whole-breast IMRT. J Appl Clin Med Phys. 2016;17(5):7–19.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Klüter S. Technical design and concept of a 0.35 T MR-Linac. Clin Transl Radiat Oncol. 2019;18:98–101.

    PubMed  PubMed Central  Google Scholar 

  92. Bijman R, et al. MR-Linac radiotherapy—the beam angle selection problem. Front Oncol. 2021;11:717681.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Taupin F, et al. Gadolinium nanoparticles and contrast agent as radiation sensitizers. Phys Med Biol. 2015;60(11):4449–64.

    Article  PubMed  Google Scholar 

  94. van Heijst TC, et al. Quantification of intra-fraction motion in breast radiotherapy using supine magnetic resonance imaging. Phys Med Biol. 2016;61(3):1352–70.

    Article  PubMed  Google Scholar 

  95. Groot Koerkamp ML, et al. Intrafraction motion during radiotherapy of breast tumor, breast tumor bed, and individual axillary lymph nodes on cine magnetic resonance imaging. Phys Imaging Radiat Oncol. 2022;23:74–9.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Henke LE, et al. Magnetic resonance image-guided radiotherapy (MRIgRT): a 4.5-year clinical experience. Clin Oncol (R Coll Radiol). 2018;30(11):720–7.

    Article  CAS  PubMed  Google Scholar 

  97. Lee HI, et al. The acute and late toxicities of MRI-guided external beam partial breast irradiation delivered using a once-per-day regimen. Front Oncol. 2021;11:649301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. De-Colle C, et al. Estimation of secondary cancer projected risk after partial breast irradiation at the 1.5 T MR-linac. Strahlenther Onkol. 2022;198(7):622–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mouawad M, et al. DCE-MRI assessment of response to neoadjuvant SABR in early stage breast cancer: comparisons of single versus three fraction schemes and two different imaging time delays post-SABR. Clin Transl Radiat Oncol. 2020;21:25–31.

    PubMed  Google Scholar 

  100. Wang C, et al. Assessment of treatment response with diffusion-weighted MRI and dynamic contrast-enhanced MRI in patients with early-stage breast Cancer treated with single-dose preoperative radiotherapy: initial results. Technol Cancer Res Treat. 2016;15(5):651–60.

    Article  PubMed  Google Scholar 

  101. Vasmel JE, et al. Dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging for response evaluation after single-dose ablative neoadjuvant partial breast irradiation. Adv Radiat Oncol. 2022;7(2):100854.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara De-Colle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De-Colle, C., Kirby, A.M., van den Bongard, D., Koerkamp, M.G. (2024). Breast Radiotherapy Using MR-Linac. In: Das, I.J., Alongi, F., Yadav, P., Mittal, B.B. (eds) A Practical Guide to MR-Linac. Springer, Cham. https://doi.org/10.1007/978-3-031-48165-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48165-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48164-2

  • Online ISBN: 978-3-031-48165-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics