Skip to main content

The Alberta Rotating Biplanar Linac-MR, a.k.a., Aurora-RT™

  • Chapter
  • First Online:
A Practical Guide to MR-Linac

Abstract

The Alberta biplanar rotating linac-MR is described with a discussion on its design objective of providing online MR guidance without hindering the advantages and workflow of conventional radiotherapy. Developments from various proof-of-concept prototypes to the current USA FDA-cleared device are described elucidating the system’s characteristics and advantages of easy installation, improved patient experience, ease of commissioning, QA and planning because of minimal electron-return effect, and providing highest contrast-to-noise ratio. Monte Carlo calculations and measurements are presented to validate these advantages, while the much larger patient bore (110 × 60 cm) with the rotating gantry and extensive lateral and vertical couch shifts of ±23 cm ensures that any target, even those offset, can be placed in 3D to the planned location. Image acquisitions and analyses are also discussed, and device specifications of SAD, MLC, output, etc. are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kirkby C, Murray B, Rathee S, Fallone BG. Lung dosimetry in a linac-MRI radiotherapy unit with a longitudinal magnetic field. Med Phys. 2010;37(9):4722–32.

    Article  CAS  PubMed  Google Scholar 

  2. Fallone BG, Murray B, Rathee S, Stanescu T, Steciw S, Vidakovic S, et al. First MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system. Med Phys. 2009;36(6):2084–8.

    Article  CAS  PubMed  Google Scholar 

  3. Burke B, Lamey M, Rathee S, Murray B, Fallone BG. Radio frequency noise from clinical linear accelerators. Phys Med Biol. 2009;54(8):2483–92.

    Article  CAS  PubMed  Google Scholar 

  4. Lamey M, Yun J, Burke B, Rathee S, Fallone BG. Radio frequency noise from an MLC: a feasibility study of the use of an MLC for linac-MR systems. Phys Med Biol. 2010;55(4):981–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lamey M, Burke B, Blosser E, Rathee S, De Zanche N, Fallone BG. Radio frequency shielding for a linac-MRI system. Phys Med Biol. 2010;55(4):995–1006.

    Article  CAS  PubMed  Google Scholar 

  6. St. Aubin J, Steciw S, Fallone BG. The design of a simulated in-line side-coupled 6 MV linear accelerator waveguide. Med Phys. 2010;37(2):466–76.

    Article  CAS  PubMed  Google Scholar 

  7. St Aubin J, Steciw S, Fallone BG. Waveguide detuning caused by transverse magnetic fields on a simulated in-line 6 MV linac. Med Phys. 2010;37(9):4751–4.

    Article  CAS  PubMed  Google Scholar 

  8. Yun J, St Aubin J, Rathee S, Fallone BG. Brushed permanent magnet DC MLC motor operation in an external magnetic field. Med Phys. 2010;37(5):2131–4.

    Article  CAS  PubMed  Google Scholar 

  9. St Aubin J, Steciw S, Fallone BG. Magnetic decoupling of the linac in a low field biplanar linac-MR system. Med Phys. 2010;37(9):4755–61.

    Article  CAS  PubMed  Google Scholar 

  10. Fallone BG. The rotating biplanar linac-magnetic resonance imaging system. Semin Radiat Oncol. 2014;24(3):200–2.

    Article  PubMed  Google Scholar 

  11. St Aubin J, Santos DM, Steciw S, Fallone BG. Effect of longitudinal magnetic fields on a simulated in-line 6 MV linac. Med Phys. 2010;37(9):4916–23.

    Article  CAS  PubMed  Google Scholar 

  12. Wachowicz K, De Zanche N, Yip E, Volotovskyy V, Fallone BG. CNR considerations for rapid real-time MRI tumor tracking in radiotherapy hybrid devices: effects of B0 field strength. Med Phys. 2016;43(8):4903.

    Article  CAS  PubMed  Google Scholar 

  13. Reynolds M, Fallone BG, Rathee S. Dose response of selected ion chambers in applied homogeneous transverse and longitudinal magnetic fields. Med Phys. 2013;40(4):042102.

    Article  CAS  PubMed  Google Scholar 

  14. de Pooter J, Billas I, de Prez L, Duane S, Kapsch RP, Karger CP, et al. Reference dosimetry in MRI-linacs: evaluation of available protocols and data to establish a code of practice. Phys Med Biol. 2021;66(5):05TR2.

    Article  Google Scholar 

  15. Reynolds M, Fallone BG, Rathee S. Technical note: response measurement for select radiation detectors in magnetic fields. Med Phys. 2015;42(6):2837–40.

    Article  CAS  PubMed  Google Scholar 

  16. Reynolds M, Rathee S, Fallone BG. Technical note: ion chamber angular dependence in a magnetic field. Med Phys. 2017;44(8):4322–8.

    Article  CAS  PubMed  Google Scholar 

  17. Malkov VN, Rogers DWO. Monte Carlo study of ionization chamber magnetic field correction factors as a function of angle and beam quality. Med Phys. 2018;45(2):908–25.

    Article  PubMed  Google Scholar 

  18. Spindeldreier CK, Schrenk O, Bakenecker A, Kawrakow I, Burigo L, Karger CP, et al. Radiation dosimetry in magnetic fields with farmer-type ionization chambers: determination of magnetic field correction factors for different magnetic field strengths and field orientations. Phys Med Biol. 2017;62(16):6708–28.

    Article  CAS  PubMed  Google Scholar 

  19. van Asselen B, Woodings SJ, Hackett SL, van Soest TL, Kok JGM, Raaymakers BW, et al. A formalism for reference dosimetry in photon beams in the presence of a magnetic field. Phys Med Biol. 2018;63(12):125008.

    Article  PubMed  Google Scholar 

  20. Reynolds M, Fallone BG, Rathee S. Dose response of selected solid state detectors in applied homogeneous transverse and longitudinal magnetic fields. Med Phys. 2014;41(9):092103.

    Article  CAS  PubMed  Google Scholar 

  21. Ghila A, Fallone BG, Rathee S. Influence of standard RF coil materials on surface and buildup dose from a 6 MV photon beam in magnetic field. Med Phys. 2016;43(11):5808.

    Article  CAS  PubMed  Google Scholar 

  22. Bray FN, Simmons BJ, Wolfson AH, Nouri K. Acute and chronic cutaneous reactions to ionizing radiation therapy. Dermatol Ther (Heidelb). 2016;6(2):185–206.

    Article  PubMed  Google Scholar 

  23. Jackson JD. Classical electrodynamics, vol. xxi. 3rd ed. New York: Wiley; 1999. p. 808.

    Google Scholar 

  24. Corea JR, Lechene PB, Lustig M, Arias AC. Materials and methods for higher performance screen-printed flexible MRI receive coils. Magn Reson Med. 2017;78(2):775–83.

    Article  CAS  PubMed  Google Scholar 

  25. Barta R, Ghila A, Rathee S, Fallone BG, De Zanche N. Impact of a parallel magnetic field on radiation dose beneath thin copper and aluminum foils. Biomed Phys Eng Express. 2020;6(3):037002.

    Article  PubMed  Google Scholar 

  26. https://doi.org/10.1002/mrm.28540.

  27. Edelstein WA, Glover GH, Hardy CJ, Redington RW. The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med. 1986;3(4):604–18.

    Article  CAS  PubMed  Google Scholar 

  28. Lustig M, Donoho DL, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95.

    Article  PubMed  Google Scholar 

  29. Goldstein T, Osher S. The split Bregman method for L1-regularized problems. Siam J Imaging Sci. 2009;2(2):323–43.

    Article  Google Scholar 

  30. Yip E, Yun J, Wachowicz K, Heikal AA, Gabos Z, Rathee S, et al. Prior data assisted compressed sensing: a novel MR imaging strategy for real time tracking of lung tumors. Med Phys. 2014;41(8):082301.

    Article  PubMed  Google Scholar 

  31. Yip E, Yun J, Wachowicz K, Gabos Z, Rathee S, Fallone BG. Sliding window prior data assisted compressed sensing for MRI tracking of lung tumors. Med Phys. 2017;44(1):84–98.

    Article  PubMed  Google Scholar 

  32. Dietz B, Yip E, Yun J, Fallone B, Wachowicz K. Real-time dynamic MR image reconstruction using compressed sensing and principal component analysis (CS-PCA): demonstration in lung tumor tracking. Med Phys. 2017;44(8):3978–89.

    Article  CAS  PubMed  Google Scholar 

  33. Yip E, Yun J, Gabos Z, Baker S, Yee D, Wachowicz K, et al. Evaluating performance of a user-trained MR lung tumor autocontouring algorithm in the context of intra-and interobserver variations. Med Phys. 2018;45(1):307–13.

    Article  PubMed  Google Scholar 

  34. Wright M, Dietz B, Yip E, Yun J, Gabos Z, Fallone B, et al. Time domain principal component analysis for rapid, real-time 2D MRI reconstruction from undersampled data. Med Phys. 2021;48(11):6724–39.

    Article  CAS  PubMed  Google Scholar 

  35. Dietz B, Yun J, Yip E, Gabos Z, Fallone B, Wachowicz K. Single patient convolutional neural networks for real-time MR reconstruction: a proof of concept application in lung tumor segmentation for adaptive radiotherapy. Phys Med Biol. 2019;64(19):195002.

    Article  PubMed  Google Scholar 

  36. Dietz B, Yun J, Yip E, Gabos Z, Fallone B, Wachowicz K. Single patient convolutional neural networks for real-time MR reconstruction: coherent low-resolution versus incoherent undersampling. Phys Med Biol. 2020;65(8):08NT3.

    Article  Google Scholar 

  37. Park J-H, Han JH, Kim C-Y, Oh CW, Lee D-H, Suh T-S, et al. Application of the gamma evaluation method in gamma knife film dosimetry. Med Phys. 2011;38(10):5778–87.

    Article  CAS  PubMed  Google Scholar 

  38. Huang F, Ma C, Wang R, Gong G, Shang D, Yin Y. Defining the individual internal gross tumor volume of hepatocellular carcinoma using 4DCT and T2-weighted MRI images by deformable registration. Transl Cancer Res. 2018;7(1):151–7.

    Article  Google Scholar 

  39. Feng M, Balter JM, Normolle D, Adusumilli S, Cao Y, Chenevert TL, et al. Characterization of pancreatic tumor motion using cine MRI: surrogates for tumor position should be used with caution. Int J Radiat Oncol Biol Phys. 2009;74(3):884–91.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kyriakou E, McKenzie DR. Changes in lung tumor shape during respiration. Phys Med Biol. 2012;57(4):919–35.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang GG, Yu H-HM, Stevens CW, Dilling TJ, Hoffe SE, Moros EG, et al. Motion management in stereotactic body radiotherapy. J Nucl Med Radiat Ther. 2012;S6(012):6.

    Google Scholar 

  42. Hendry JH, Jeremic B, Zubizarreta EH. Normal tissue complications after radiation therapy. Rev Panam Salud Publica. 2006;20(2–3):151–60.

    PubMed  Google Scholar 

  43. Vedam SS, Kini VR, Keall PJ, Ramakrishnan V, Mostafavi H, Mohan R. Quantifying the predictability of diaphragm motion during respiration with a noninvasive external marker. Med Phys. 2003;30(4):505–13.

    Article  CAS  PubMed  Google Scholar 

  44. Nioutsikou E, Seppenwoolde Y, Symonds-Tayler JRN, Heijmen B, Evans P, Webb S. Dosimetric investigation of lung tumor motion compensation with a robotic respiratory tracking system: an experimental study. Med Phys. 2008;35(4):1232–40.

    Article  PubMed  Google Scholar 

  45. Giraud P, Houle A. Respiratory gating for radiotherapy: main technical aspects and clinical benefits. ISRN Pulmonol. 2013;2013:1–3.

    Article  Google Scholar 

  46. Bhagat N, Fidelman N, Durack JC, Collins J, Gordon RL, LaBerge JM, et al. Complications associated with the percutaneous insertion of fiducial markers in the thorax. Cardiovasc Intervent Radiol. 2010;33(6):1186–91.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Roberge D, Cabrera T. Liver biopsy in modern medicine. UK: IntechOpen Ltd.; 2011.

    Google Scholar 

  48. Kitamura K, Shirato H, Shimizu S, Shinohara N, Harabayashi T, Shimizu T, et al. Registration accuracy and possible migration of internal fiducial gold marker implanted in prostate and liver treated with real-time tumor-tracking radiation therapy (RTRT). Radiother Oncol. 2002;62(3):275–81.

    Article  PubMed  Google Scholar 

  49. Imura M, Yamazaki K, Shirato H, Onimaru R, Fujino M, Shimizu S, et al. Insertion and fixation of fiducial markers for setup and tracking of lung tumors in radiotherapy. Int J Radiat Oncol Biol Phys. 2005;63(5):1442–7.

    Article  PubMed  Google Scholar 

  50. Ozhasoglu C, Murphy MJ. Issues in respiratory motion compensation during external-beam radiotherapy. Int J Radiat Oncol Biol Phys. 2002;52(5):1389–99.

    Article  PubMed  Google Scholar 

  51. Paulsson AK, Yom SS, Anwar M, Pinnaduwage D, Sudhyadhom A, Gottschalk AR, et al. Respiration-induced intraorgan deformation of the liver: implications for treatment planning in patients treated with fiducial tracking. Technol Cancer Res Treat. 2017;16(6):776–82.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chen S, Lin C, Enke C, Zhou S. SU-E-J-122: quantification of respiratory-induced pancreatic head tumor rotation and deformation using 4DCT and fiducial markers. Med Phys. 2012;39(6Part8):3680.

    Article  CAS  PubMed  Google Scholar 

  53. Gelder RV, Wong S, Le A, Podreka A, Briggs A, Haddad C, et al. Experience with an abdominal compression band for radiotherapy of upper abdominal tumours. J Med Radiat Sci. 2018;65(1):48–54.

    Article  PubMed  Google Scholar 

  54. Bouilhol G, Ayadi M, Rit S, Thengumpallil S, Schaerer J, Vandemeulebroucke J, et al. Is abdominal compression useful in lung stereotactic body radiation therapy? A 4DCT and dosimetric lobe-dependent study. Phys Med. 2012;29(4):333–40.

    Article  PubMed  Google Scholar 

  55. Dempsey JF, Benoit D, Fitzsimmons JR, Haghighat A, Li JG, Low DA, et al. A device for realtime 3D image-guided IMRT. Int J Radiat Oncol Biol Phys. 2005;63(2):1095.

    Google Scholar 

  56. Raaymakers BW, Wlagendijk JJ, Overweg J, Kok JGM, Raaijmakers AJE, Kerkhof EM, et al. Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept. Phys Med Biol. 2009;54(12):N229–N37.

    Article  CAS  PubMed  Google Scholar 

  57. van Herk M, Remeijer P, Rasch C, Lebesque JV. The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys. 2000;47(4):1121–35.

    Article  PubMed  Google Scholar 

  58. Plathow C, Fink C, Ley S, Puderbach M, Eichinger M, Zuna I, et al. Measurement of tumor diameter-dependent mobility of lung tumors by dynamic MRI. Radiother Oncol. 2004;73(3):349–54.

    Article  PubMed  Google Scholar 

  59. Eccles CL, Patel R, Simeonov AK, Lockwood G, Haider M, Dawson LA. Comparison of liver tumor motion with and without abdominal compression using cine-magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2011;79(2):602–8.

    Article  PubMed  Google Scholar 

  60. Tong X, Chen X, Li J, Xu Q, Lin M-H, Chen L, et al. Intrafractional prostate motion during external beam radiotherapy monitored by a real-time target localization system. J Appl Clin Med Phys. 2015;16(2):51–61.

    Article  PubMed Central  Google Scholar 

  61. Sihono DSK, Ehmann M, Heitmann S, Von Swietochowski S, Grimm M, Boda-Heggemann J, et al. Determination of Intrafraction prostate motion during external beam radiation therapy with a transperineal 4-dimensional ultrasound real-time tracking system. Int J Radiat Oncol Biol Phys. 2018;101(1):136–43.

    Article  PubMed  Google Scholar 

  62. Chavhan GB, Babyn PS, Jankharia BG, Cheng H-LM, Shroff MM. Steady-state MR imaging sequences: physics, classification, and clinical applications. Radiographics. 2008;28(4):1147–60.

    Article  PubMed  Google Scholar 

  63. Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB, et al. The management of respiratory motion in radiation oncology report of AAPM task group 76. Med Phys. 2006;33(10):3874–900.

    Article  PubMed  Google Scholar 

  64. Yun J, Wachowicz K, Mackenzie M, Rathee S, Robinson D, Fallone BG. First demonstration of intrafractional tumor-tracked irradiation using 2D phantom MR images on a prototype linac-MR. Med Phys. 2013;40(5):051718.

    Article  PubMed  Google Scholar 

  65. Yun J, Yip E, Gabos Z, Wachowicz K, Rathee S, Fallone BG. Improved lung tumor autocontouring algorithm for intrafractional tumor tracking using 0.5 T linac-MR. Biomed Phys Eng Express. 2016;2(6):067004.

    Article  Google Scholar 

  66. Yun J, Yip E, Gabos Z, Baker S, Yee D, Wachowicz K, et al. A deep learning-based tumor auto-contouring algorithm for real-time tumor tracking using linac-MR. Med Phys. 2018;45(6):E669.

    Google Scholar 

  67. Tahmasebi N, Boulanger P, Yun J, Fallone BG, Punithakumar K. Tracking tumor boundary using point correspondence for adaptive radio therapy. Comput Methods Prog Biomed. 2018;165:187–95.

    Article  Google Scholar 

  68. Yun J, Yip E, Wachowicz K, Rathee S, Mackenzie M, Robinson D, et al. Evaluation of a lung tumor autocontouring algorithm for intrafractional tumor tracking using low-field MRI: a phantom study. Med Phys. 2012;39(3):1481–94.

    Article  PubMed  Google Scholar 

  69. Han G, Wachowicz K, Usmani N, Yee J, Wong J, Fallone BG, et al. Deep learning-based autocontouring algorithm for non-invasive intrafractional tumour-tracked radiotherapy (nifteRT) on Linac-MR. Med Phys. 2022;49(8):5634.

    Google Scholar 

  70. Yun J, Yip E, Gabos Z, Wachowicz K, Rathee S, Fallone BG. Neural-network based autocontouring algorithm for intrafractional lung-tumor tracking using Linac-MR. Med Phys. 2015;42(5):2296–310.

    Article  PubMed  Google Scholar 

  71. Yun J, Mackenzie M, Rathee S, Robinson D, Fallone BG. An artificial neural network (ANN)-based lung-tumor motion predictor for intrafractional MR tumor tracking. Med Phys. 2012;39(7):4423–33.

    Article  PubMed  Google Scholar 

  72. Lawrence S, Giles CL, editors. Overfitting and neural networks: conjugate gradient and backpropagation. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks IJCNN 2000 Neural Computing: New Challenges and Perspectives for the New Millennium; 2000 27-27 July 2000.

    Google Scholar 

  73. Yun J, Rathee S, Fallone BG. A deep-learning based 3D tumor motion prediction algorithm for non-invasive intra-fractional tumor-tracked radiotherapy (nifteRT) on Linac-MR. Int J Radiat Oncol Biol Phys. 2019;105(1):S28.

    Article  Google Scholar 

  74. Johnson N, Wachowicz K, Rathee S, Fallone BG, Yun J. Accurate, on-demand neural networks for respiratory motion forecasting. Med Phys. 2022;49(8):5640.

    Google Scholar 

  75. Yang R, Santos DM, Fallone BG, St-Aubin J. A novel transport sweep architecture for efficient deterministic patient dose calculations in MRI-guided radiotherapy. Phys Med Biol. 2019;64(18):185012.

    Article  CAS  PubMed  Google Scholar 

  76. Yang R, Santos DM, Fallone BG, St-Aubin J. Feasibility of energy adaptive angular meshing for perpendicular and parallel magnetic fields in a grid based Boltzmann solver. Biomed Phys Eng Express. 2020;6(2):025006.

    Article  CAS  PubMed  Google Scholar 

  77. Hilts M, Halperin H, Morton D, Batchelar D, Bachand F, Chowdhury R, et al. Skin dose in breast brachytherapy: defining a robust metric. Brachytherapy. 2015;14(6):970–8.

    Article  PubMed  Google Scholar 

  78. Oliver P, Yip E, Reynolds M, Burke B, Fallone BG, Murray B, et al. Skin dose investigations on a 0.5 T inline rotating biplanar linac-MR. Med Phys. 2022;49(8):5628.

    Google Scholar 

  79. Reynolds M, Oliver PAK, Wood T, Wachowicz K, Burke B, Fallone BG. Contaminant electron origins on a 0.5T inline linac-MR. Med Phys. 2022;49(8):5681.

    Google Scholar 

  80. Tari SY, Oliver P, Sinn D, Wood T, Steciw S, Murray B, et al. Initial experience for treatment planning system commissioning of the 0.5 T inline rotating bi-planar Linac-MR system. Med Phys. 2022;49(8):5693.

    Google Scholar 

  81. Yip E, Tari SY, Reynolds M, Sinn D, Murray B, Fallone BG, et al. Clinical reference dosimetry on the inline 0.5T rotating biplanar Linac-MR system. Med Phys. 2022;48(8):5630.

    Google Scholar 

  82. Alvarez P, IROC, editors. Updates imaging and dosimetry relevant to MRgRT2021. Summer School of the American Association of Physicists in Medicine; 2021.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Gino Fallone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fallone, B.G., Rathee, S., de Zanche, N., Yip, E., Wachowicz, K., Yun, J. (2024). The Alberta Rotating Biplanar Linac-MR, a.k.a., Aurora-RT™. In: Das, I.J., Alongi, F., Yadav, P., Mittal, B.B. (eds) A Practical Guide to MR-Linac. Springer, Cham. https://doi.org/10.1007/978-3-031-48165-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48165-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48164-2

  • Online ISBN: 978-3-031-48165-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics