Skip to main content

Elekta Unity System

  • Chapter
  • First Online:
A Practical Guide to MR-Linac
  • 129 Accesses

Abstract

The excellent soft-tissue contrast of magnetic resonance (MR) images, and the speed and frequency with which the patient can be imaged, allows clear visualization of the target and nearby organs at risk at multiple time points over the course of each treatment. A radiotherapy linac combined with MR imaging enables treatment plan adaptation and considering the patient’s daily anatomy, achieving a greater accuracy of dose delivery to the targets while sparing healthy tissue. This chapter describes the components of the Elekta Unity 1.5T MR-Linac system, including the introduction of MRgRT to a department, staff training, machine installation, quality assurance procedures, and MRgRT treatment workflows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lagendijk JJW, Bakker CJG. MRI-guided radiotherapy: a MRI based linear accelerator. Radiother Oncol. 2000;56(S1):S60.

    Google Scholar 

  2. Lagendijk JJW, et al. MRI/linac integration. Radiother Oncol. 2008;86(1):25–9.

    Article  PubMed  Google Scholar 

  3. Raaymakers BW, et al. Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept. Phys Med Biol. 2009;54(12):N229–37.

    Article  CAS  PubMed  Google Scholar 

  4. Raaymakers BW, et al. First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Phys Med Biol. 2017;62(23):L41–50.

    Article  CAS  PubMed  Google Scholar 

  5. Werensteijn-Honingh AM, et al. Feasibility of stereotactic radiotherapy using a 1.5T MR-linac: multi-fraction treatment of pelvic lymph node oligometastases. Radiother Oncol. 2019;134:50–4.

    Article  PubMed  Google Scholar 

  6. de Pooter J, et al. Reference dosimetry in MRI-linacs: evaluation of available protocols and data to establish a Code of Practice. Phys Med Biol. 2021;66(5):05tr02.

    Article  PubMed  Google Scholar 

  7. Raaijmakers AJ, Raaymakers BW, Lagendijk JJ. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons. Phys Med Biol. 2005;50(7):1363–76.

    Article  CAS  PubMed  Google Scholar 

  8. Hackett SL, et al. Spiraling contaminant electrons increase doses to surfaces outside the photon beam of an MRI-linac with a perpendicular magnetic field. Phys Med Biol. 2018;63(9):095001.

    Article  CAS  PubMed  Google Scholar 

  9. Malkov VN, et al. Monte Carlo simulations of out-of-field skin dose due to spiralling contaminant electrons in a perpendicular magnetic field. Med Phys. 2019;46(3):1467–77.

    Article  PubMed  Google Scholar 

  10. Oborn BM, et al. High resolution entry and exit Monte Carlo dose calculations from a linear accelerator 6 MV beam under the influence of transverse magnetic fields. Med Phys. 2009;36(8):3549–59.

    Article  CAS  PubMed  Google Scholar 

  11. Raaijmakers AJ, Raaymakers BW, Lagendijk JJ. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength. Phys Med Biol. 2008;53(4):909–23.

    Article  CAS  PubMed  Google Scholar 

  12. Woodings SJ, et al. Beam characterisation of the 1.5 T MRI-linac. Phys Med Biol. 2018;63(8):085015.

    Article  CAS  PubMed  Google Scholar 

  13. van Asselen B, et al. A formalism for reference dosimetry in photon beams in the presence of a magnetic field. Phys Med Biol. 2018;63(12):125008.

    Article  PubMed  Google Scholar 

  14. Raaymakers BW, et al. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose deposition in a transverse magnetic field. Phys Med Biol. 2004;49(17):4109–18.

    Article  CAS  PubMed  Google Scholar 

  15. Ahmad SB, et al. Evaluation of a commercial MRI Linac based Monte Carlo dose calculation algorithm with GEANT4. Med Phys. 2016;43(2):894–907.

    Article  PubMed  Google Scholar 

  16. Ahmad SB, et al. Backscatter dose effects for high atomic number materials being irradiated in the presence of a magnetic field: a Monte Carlo study for the MRI linac. Med Phys. 2016;43(8):4665.

    Article  CAS  PubMed  Google Scholar 

  17. Malkov VN, et al. Monte Carlo simulations of out-of-field surface doses due to the electron streaming effect in orthogonal magnetic fields. Phys Med Biol. 2019;64(11):115029.

    Article  CAS  PubMed  Google Scholar 

  18. Park JM, et al. Air-electron stream interactions during magnetic resonance IGRT: skin irradiation outside the treatment field during accelerated partial breast irradiation. Strahlenther Onkol. 2018;194(1):50–9.

    Article  PubMed  Google Scholar 

  19. Hehakaya C, et al. Early health economic analysis of 1.5 T MRI-guided radiotherapy for localized prostate cancer: decision analytic modelling. Radiother Oncol. 2021;161:74–82.

    Article  PubMed  Google Scholar 

  20. Palm RF, et al. Assessment of MRI-Linac Economics under the RO-APM. J Clin Med. 2021;10(20):4706.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yu JB, et al. National patterns of early adoption of magnetic resonance imaging-guided linear accelerators in 2018 to 2019. Adv Radiat Oncol. 2023;8(3):101167.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hehakaya C, et al. Implementation of magnetic resonance imaging-guided radiation therapy in routine care: opportunities and challenges in the United States. Adv Radiat Oncol. 2022;7(5):100953.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jagt TZ, et al. Benchmarking daily adaptation using fully automated radiotherapy treatment plan optimization for rectal cancer. Phys Imaging Radiat Oncol. 2022;24:7–13.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dunkerley DAP, et al. Clinical implementational and site-specific workflows for a 1.5T MR-Linac. J Clin Med. 2022;11(6):1662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Speight R, et al. IPEM topical report: a 2018 IPEM survey of MRI use for external beam radiotherapy treatment planning in the UK. Phys Med Biol. 2019;64(17):175021.

    Article  PubMed  Google Scholar 

  26. Kim J, et al. Implementation of a novel algorithm for generating synthetic CT images from magnetic resonance imaging data sets for prostate cancer radiation therapy. Int J Radiat Oncol Biol Phys. 2015;91(1):39–47.

    Article  PubMed  Google Scholar 

  27. Kok JG, et al. Installation of the 1.5 T MRI accelerator next to clinical accelerators: impact of the fringe field. Phys Med Biol. 2009;54(18):N409–15.

    Article  CAS  PubMed  Google Scholar 

  28. Cao M, Padgett KR, Rong Y. Are in-house diagnostic MR physicists necessary for clinical implementation of MRI guided radiotherapy? J Appl Clin Med Phys. 2017;18(5):6–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. McGee KP, et al. Findings of the AAPM Ad Hoc committee on magnetic resonance imaging in radiation therapy: Unmet needs, opportunities, and recommendations. Med Phys. 2021;48(8):4523–31.

    Article  PubMed  Google Scholar 

  30. Winkel D, et al. Adaptive radiotherapy: The Elekta Unity MR-linac concept. Clin Transl Radiat Oncol. 2019;18:54–9.

    PubMed  PubMed Central  Google Scholar 

  31. Paulson ES, et al. 4D-MRI driven MR-guided online adaptive radiotherapy for abdominal stereotactic body radiation therapy on a high field MR-Linac: implementation and initial clinical experience. Clin Transl Radiat Oncol. 2020;23:72–9.

    PubMed  PubMed Central  Google Scholar 

  32. Chen X, et al. A daily end-to-end quality assurance workflow for MR-guided online adaptive radiation therapy on MR-Linac. J Appl Clin Med Phys. 2020;21(1):205–12.

    Article  PubMed  Google Scholar 

  33. Gupta A, et al. Online adaptive radiotherapy for head and neck cancers on the MR linear accelerator: introducing a novel modified Adapt-to-Shape approach. Clin Transl Radiat Oncol. 2022;32:48–51.

    CAS  PubMed  Google Scholar 

  34. Tijssen RHN, et al. MRI commissioning of 1.5T MR-linac systems - a multi-institutional study. Radiother Oncol. 2019;132:114–20.

    Article  PubMed  Google Scholar 

  35. Roberts DA, et al. Machine QA for the Elekta Unity system: a report from the Elekta MR-linac consortium. Med Phys. 2021;48(5):e67–85.

    Article  PubMed  Google Scholar 

  36. Woodings SJ, et al. Acceptance procedure for the linear accelerator component of the 1.5 T MRI-linac. J Appl Clin Med Phys. 2021;22(8):45–59.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nath R, et al. AAPM code of practice for radiotherapy accelerators: report of AAPM Radiation Therapy Task Group No. 45. Med Phys. 1994;21(7):1093–121.

    Article  CAS  PubMed  Google Scholar 

  38. Klein EE, et al. Task Group 142 report: quality assurance of medical accelerators. Med Phys. 2009;36(9):4197–212.

    Article  PubMed  Google Scholar 

  39. Houweling AC, et al. Performance of a cylindrical diode array for use in a 1.5 T MR-linac. Phys Med Biol. 2016;61(3):N80–9.

    Article  CAS  PubMed  Google Scholar 

  40. Glide-Hurst CK, et al. Task group 284 report: magnetic resonance imaging simulation in radiotherapy: considerations for clinical implementation, optimization, and quality assurance. Med Phys. 2021;48(7):e636–70.

    Article  PubMed  Google Scholar 

  41. van Zijp HM, et al. Minimizing the magnetic field effect in MR-linac specific QA-tests: the use of electron dense materials. Phys Med Biol. 2016;61(3):N50–9.

    Article  PubMed  Google Scholar 

  42. O'Brien DJ, et al. Reference dosimetry in magnetic fields: formalism and ionization chamber correction factors. Med Phys. 2016;43(8):4915.

    Article  CAS  PubMed  Google Scholar 

  43. de Prez L, et al. First water calorimetric Dw measurement and direct measurement of magnetic field correction factors, KQ, B, in a 1.5 T B-field of an MRI Linac. Med Phys. 2016;43(6):3874.

    Article  Google Scholar 

  44. de Prez LA, et al. Direct measurement of ion chamber correction factors, kQ and kB, in a 7 MV MRI-linac. Phys Med Biol. 2019;64(10):105025.

    Article  PubMed  Google Scholar 

  45. Malkov VN, Rogers DWO. Monte Carlo study of ionization chamber magnetic field correction factors as a function of angle and beam quality. Med Phys. 2018;45(2):908–25.

    Article  PubMed  Google Scholar 

  46. Malkov VN, Rogers DWO. Sensitive volume effects on Monte Carlo calculated ion chamber response in magnetic fields. Med Phys. 2017;44(9):4854–8.

    Article  CAS  PubMed  Google Scholar 

  47. Andreo P, et al. Absorbed dose determination in external beam radiotherapy - an international code of practice for dosimetry based on standards of absorbed dose to water, in technical report series. Vienna: International Atomic Energy Agency; 2000.

    Google Scholar 

  48. Almond PR, et al. AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys. 1999;26(9):1847–70.

    Article  CAS  PubMed  Google Scholar 

  49. Hackett SL, et al. Consequences of air around an ionization chamber: are existing solid phantoms suitable for reference dosimetry on an MR-linac? Med Phys. 2016;43(7):3961.

    Article  CAS  PubMed  Google Scholar 

  50. O’Brien DJ, et al. Small air-gaps affect the response of ionization chambers in the presence of a 1.5 T magnetic field. Med Phys. 2015;42(6):3724.

    Article  Google Scholar 

  51. O’Brien DJ, Sawakuchi GO. Monte Carlo study of the chamber-phantom air gap effect in a magnetic field. Med Phys. 2017;44(7):3830–8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Malkov VN, et al. MR-linac daily semi-automated end-to-end quality control verification. J Appl Clin Med Phys. 2023;24(5):e13916.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang Y, et al. Development of a fast Monte Carlo dose calculation system for online adaptive radiation therapy quality assurance. Phys Med Biol. 2017;62(12):4970–90.

    Article  CAS  PubMed  Google Scholar 

  54. Agnew CE, Irvine DM, McGarry CK. Correlation of phantom-based and log file patient-specific QA with complexity scores for VMAT. J Appl Clin Med Phys. 2014;15(6):4994.

    Article  PubMed  Google Scholar 

  55. Menten MJ, et al. Automatic reconstruction of the delivered dose of the day using MR-linac treatment log files and online MR imaging. Radiother Oncol. 2020;145:88–94.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lim SB, et al. An investigation of using log-file analysis for automated patient-specific quality assurance in MRgRT. J Appl Clin Med Phys. 2021;22(9):183–8.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kontaxis C, et al. Delivered dose quantification in prostate radiotherapy using online 3D cine imaging and treatment log files on a combined 1.5T magnetic resonance imaging and linear accelerator system. Phys Imaging Radiat Oncol. 2020;15:23–9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yang, B., et al. Initial clinical experience of patient-specific QA of treatment delivery in online adaptive radiotherapy using a 1.5 T MR-Linac. Biomed Phys Eng Express. 2021;7(3).

    Google Scholar 

  59. Xhaferllari I, et al. Clinical utility of Gafchromic film in an MRI-guided linear accelerator. Radiat Oncol. 2021;16(1):117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mönnich D, et al. Quality assurance of IMRT treatment plans for a 1.5 T MR-linac using a 2D ionization chamber array and a static solid phantom. Phys Med Biol. 2020;65(16):16nt01.

    Article  PubMed  Google Scholar 

  61. de Vries JHW, et al. Characterization of a prototype MR-compatible Delta4 QA system in a 1.5 tesla MR-linac. Phys Med Biol. 2018;63(2):02NT02.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochem W. H. Wolthaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wolthaus, J.W.H., Omari, E.A., Chen, X., van Asselen, B. (2024). Elekta Unity System. In: Das, I.J., Alongi, F., Yadav, P., Mittal, B.B. (eds) A Practical Guide to MR-Linac. Springer, Cham. https://doi.org/10.1007/978-3-031-48165-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48165-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48164-2

  • Online ISBN: 978-3-031-48165-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics