Skip to main content

Automation of Structural Fire Resistance Design

  • Chapter
  • First Online:
Intelligent Building Fire Safety and Smart Firefighting

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. BSi, EN 1990 Eurocode 0: Basis for structural design (2002)

    Google Scholar 

  2. M. Luo, X. Sun, S. Li, A historical review of fire engineering practice and advances in China. Fire Technol. (2022). https://doi.org/10.1007/s10694-022-01300-8

    Article  Google Scholar 

  3. J. Gales, B. Chorlton, C. Jeanneret, The historical narrative of the standard temperature-time heating curve for structures. Fire Technol. 57, 529–558 (2021). https://doi.org/10.1007/s10694-020-01040-7

    Article  Google Scholar 

  4. V.E. Saouma, M.A. Hariri-Ardebili, Aging, shaking, and cracking of infrastructures (2021). https://doi.org/10.1007/978-3-030-57434-5.

  5. K.A. Porter, An overview of PEER’s performance-based earthquake engineering methodology, in 9th International Conference on Application of Statistics and Probability in Civil Engineering (2003), pp. 973–980

    Google Scholar 

  6. R. Qureshi, S. Ni, N. Elhami Khorasani, R. Van Coile, D. Hopkin, T. Gernay, Probabilistic models for temperature-dependent strength of steel and concrete. J. Struct. Eng. 146, 1–18 (2020). https://doi.org/10.1061/(asce)st.1943-541x.0002621

  7. T. Molkens, R. Van Coile, T. Gernay, Assessment of damage and residual load bearing capacity of a concrete slab after fire: Applied reliability-based methodology. Eng. Struct. 150, 969–985 (2017). https://doi.org/10.1016/j.engstruct.2017.07.078

    Article  Google Scholar 

  8. Z. Zhu, S.E. Quiel, N.E. Khorasani, Bivariate structural-fire fragility curves for simple-span overpass bridges with composite steel plate girders. Struct. Saf. 100, 102294 (2023). https://doi.org/10.1016/j.strusafe.2022.102294

    Article  Google Scholar 

  9. BSi, EN 1991–1–2:2002 Eurocode 1: Actions on Structures - Part 1–2: General Actions - Actions on Structures Exposed to Fire (2002)

    Google Scholar 

  10. X. Dai, S. Welch, A. Usmani, A critical review of “travelling fire” scenarios for performance-based structural engineering. Fire Saf. J. 91, 568–578 (2017). https://doi.org/10.1016/j.firesaf.2017.04.001

    Article  Google Scholar 

  11. A.M. Jonsdottir, G. Rein, Out of range. Fire Risk Manag. 14–17 (2009). https://doi.org/10.5749/minnesota/9780816676262.003.0005

  12. Y. Hasemi, Y. Yokobayashi, T. Wakamatsu, A.V. Ptchelintsev, Modelling of heating mechanism and thermal response of structural components exposed to localised fires, in Thirteenth Meeting of the UJNR Planel on Fire Research and Safety (1996)

    Google Scholar 

  13. X. Dai, S. Welch, O. Vassart, K. Cábová, L. Jiang, J. Maclean, G.C. Clifton, A. Usmani, An extended travelling fire method framework for performance-based structural design. Fire Mater. 44, 437–457 (2020). https://doi.org/10.1002/fam.2810

    Article  Google Scholar 

  14. C. Clifton, Fire models for large firecells, HERA Report (1996)

    Google Scholar 

  15. G. Stern-Gottfried, J. Rein, Travelling fires for structural design-Part II: design methodology. Fire Saf. J. 54, 96–112 (2012). https://doi.org/10.1016/j.firesaf.2012.06.011

  16. E. Rackauskaite, C. Hamel, A. Law, G. Rein, Improved formulation of travelling fires and application to concrete and steel structures. Structures 3, 250–260 (2015). https://doi.org/10.1016/j.istruc.2015.06.001

    Article  Google Scholar 

  17. M. Heidari, P. Kotsovinos, G. Rein, Flame extension and the near field under the ceiling for travelling fires inside large compartments. Fire Mater. 44, 423–436 (2019). https://doi.org/10.1002/fam.2773

    Article  Google Scholar 

  18. Z. Nan, A.A. Khan, L. Jiang, S. Chen, A. Usmani, Application of travelling behaviour models for thermal responses in large compartment fires. Fire Saf. J. 134, 103702 (2022). https://doi.org/10.1016/j.firesaf.2022.103702

    Article  Google Scholar 

  19. BSi, EN 1993–1–2:2005 Eurocode 3: Design of steel structures – Part 1–2: General rules – Structural fire design (2005)

    Google Scholar 

  20. A.S. Usmani, J.M. Rotter, S. Lamont, A.M. Sanad, M. Gillie, Fundamental principles of structural behaviour under thermal effects. Fire Saf. J. 36, 721–744 (2001). https://doi.org/10.1016/S0379-7112(01)00037-6

    Article  Google Scholar 

  21. Dassault Systèmes, Abaqus Analysis User’s Guide (2014). http://130.149.89.49:2080/v6.14/books/usb/default.htm

  22. Livermore Software Technology Corporation (LSTC), LS-DYNA: keyword user’s manual, vol. I (2018)

    Google Scholar 

  23. ANSYS (2007)

    Google Scholar 

  24. Weidlinger Associates Inc., WTC 7 Collapse Analysis and Assessment Report (2010)

    Google Scholar 

  25. L. Song, B.A. Izzuddin, A.S. Elnashai, P.J. Dowling, An integrated adaptive environment for fire and explosion analysis of steel frames - part I: analytical models. J. Constr. Steel Res. 53, 63–85 (2000). https://doi.org/10.1016/S0143-974X(99)00040-1

    Article  Google Scholar 

  26. F. McKenna, G. Fenves, M. Scott, OpenSees: open system for earthquake engineering simulation (2000). https://opensees.berkeley.edu/

  27. M.A. Orabi, A.A. Khan, A. Usmani, An overview of OpenSEES for fire, in Proceedings 1st Eurasian Conference. OpenSEES OpenSEES Days Eurasia, Hong Kong, China, 2019

    Google Scholar 

  28. J. Jiang, L. Jiang, P. Kotsovinos, J. Zhang, A. Usmani, F. McKenna, G.-Q. Li, OpenSees software architecture for the analysis of structures in fire. J. Comput. Civ. Eng. 29, 04014030 (2015). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000305

    Article  Google Scholar 

  29. Y. Jiang, Development and application of a thermal analysis framework in OpenSees for structures in fire, The University of Edinburgh, 2012

    Google Scholar 

  30. X. Dai, An extended travelling fire method framework with an OpenSees-based integrated tool SIFBuilder, The University of Edinburgh, 2017

    Google Scholar 

  31. J. Jiang, Nonlinear thermomechanical analysis of structures using OpenSees, The University of Edinburgh, 2012

    Google Scholar 

  32. L. Jiang, M.A. Orabi, J. Jiang, A. Usmani, Modelling concrete slabs subjected to fires using nonlinear layered shell elements and concrete damage-plasticity material. Eng. Struct. 234, 111977 (2021). https://doi.org/10.1016/j.engstruct.2021.111977

    Article  Google Scholar 

  33. T. Kartalis-Kaounis, V.K. Papanikolaou, GiD + OpenSees, (2017). https://github.com/rclab-auth/gidopensees

  34. CIMNE, GiD (2020). www.gidhome.com

  35. M.A. Orabi, A.A. Khan, L. Jiang, T. Yarlagadda, J. Torero, A. Usmani, Integrated nonlinear structural simulation of composite buildings in fire. Eng. Struct. 252 (2022). https://doi.org/10.1016/j.engstruct.2021.113593

  36. T. McAllister, R. MacNeill, O. Erbay, A. Sarawit, M. Zarghamee, S. Kirkpatrick, J. Gross, Analysis of structural response of WTC 7 to fire and sequential failures leading to collapse. J. Struct. Eng. (United States) 138, 109–117 (2012). https://doi.org/10.1061/(ASCE)ST.1943-541X.0000398

    Article  Google Scholar 

  37. K. Prassad, H. Baum, Fire structure interface and thermal response of World Trade Center towers , National Institute of Standards and Technology, Gaithersburg, MD, 2005. https://doi.org/10.6028/NIST.NCSTAR.1-5g

  38. J.-M. Franssen, T. Gernay, User’s manual for SAFIR (version 2022) - Part 1: general considerations, Liege University, 2022. https://www.uee.uliege.be/upload/docs/application/pdf/2022-04/manual_of_safir_2022_-_1_general.pdf

  39. R. Zaharia, C. Vulcu, O. Vassart, T. Gernay, J.M. Franssen, Numerical analysis of partially fire protected composite slabs, Steel Compos. Struct. 14, 21–39 (2013). https://doi.org/10.12989/scs.2013.14.1.021

  40. J.M. Franssen, T. Gernay, Modeling structures in fire with SAFIR®: theoretical background and capabilities. J. Struct. Fire Eng. 8, 300–323 (2017). https://doi.org/10.1108/JSFE-07-2016-0010

    Article  Google Scholar 

  41. L. Lelli, J. Loutan, Advanced analyses of the membrane action of composite slabs under natural fire scenarios a case study of the JTI headquarters. J. Struct. Fire Eng. 9, 77–90 (2018). https://doi.org/10.1108/JSFE-12-2016-0020

    Article  Google Scholar 

  42. A.A. Khan, M.A. Khan, C. Zhang, L. Jiang, A. Usmani, OpenFIRE: an open computational framework for structural response to real fires. Fire Technol. (2021). In press

    Google Scholar 

  43. A. Alikhan, OpenFIRE (2021). https://github.com/aatif85/OpenFIRE

  44. A.A. Khan, M.A. Khan, K.A. Cashell, A. Usmani, An open-source software framework for the integrated simulation of structures in fire. Fire Saf. J. 140, 103896 (2023). https://doi.org/10.1016/j.firesaf.2023.103896

  45. M.A. Orabi, L. Jiang, A. Usmani, J.L. Torero, The collapse of world trade center 7: revisited. Fire Technol. (2020). https://doi.org/10.14264/9f81895

  46. Z. Nan, M.A. Orabi, X. Zhang, A.A. Khan, X. Huang, Rapid forecasting of the structural failure of a full-scale aluminium alloy reticulated shell structure in fire, in 12th International Conference on Structures in Fire, Hong Kong, China, 2022

    Google Scholar 

  47. Z. Nan, M.A. Orabi, X. Huang, Y. Jiang, A. Usmani, Structural-fire responses forecasting via modular AI. Fire Saf. J. 140, 103863 (2023). https://doi.org/10.1016/j.firesaf.2023.103863

  48. D. Lange, S. Devaney, A. Usmani, An application of the PEER performance based earthquake engineering framework to structures in fire. Eng. Struct. 66, 100–115 (2014). https://doi.org/10.1016/j.engstruct.2014.01.052

    Article  Google Scholar 

  49. Computers & Structures Inc., ETABS (2016)

    Google Scholar 

  50. Computers & Structures Inc., Perform3D (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuojun Nan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orabi, M.A., Nan, Z., Usmani, A. (2024). Automation of Structural Fire Resistance Design. In: Huang, X., Tam, W.C. (eds) Intelligent Building Fire Safety and Smart Firefighting. Digital Innovations in Architecture, Engineering and Construction. Springer, Cham. https://doi.org/10.1007/978-3-031-48161-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48161-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48160-4

  • Online ISBN: 978-3-031-48161-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics