Skip to main content

Introduction of Artificial Intelligence

  • Chapter
  • First Online:
Intelligent Building Fire Safety and Smart Firefighting

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.L. Samuel, Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 3(3), 210–229 (1959)

    Article  MathSciNet  Google Scholar 

  2. Y. Yao, Y. Liu, Y. Yu, H. Xu, W. Lv, Z. Li, X. Chen, K-SVM: an effective SVM algorithm based on K-means clustering. J. Comput. 8(10), 2632–2639 (2013)

    Article  Google Scholar 

  3. R. Geng, J. Song, Z. Zhong, S. Ni, W. Liu, Z. He, J. Liu, Crosstalk of redox-related subtypes, establishment of a prognostic model and immune responses in endometrial carcinoma. Cancers 14(14), 3383 (2022)

    Article  Google Scholar 

  4. H. Tang, Y. Wang, S. Tang, D. Chu, C. Li, A randomized clustering forest approach for efficient prediction of protein functions. IEEE Access 7, 12360–12372 (2019)

    Article  Google Scholar 

  5. Y. Li, X. Chu, D. Tian, J. Feng, W. Mu, Customer segmentation using K-means clustering and the adaptive particle swarm optimization algorithm. Appl. Soft Comput. 113, 107924 (2021)

    Article  Google Scholar 

  6. J. Zhang, Y. Wang, B. Li, S. Hu, Privacy-Preserving accelerated clustering for data encrypted by different keys, in Smart Computing and Communication: 5th International Conference, SmartCom 2020, Paris, France, December 29–31, 2020, Proceedings 5 (Springer International Publishing, 2021), pp. 156–162

    Google Scholar 

  7. A. Khatami, S. Mirghasemi, A. Khosravi, C.P. Lim, S. Nahavandi, A new PSO-based approach to fire flame detection using K-Medoids clustering. Expert Syst. Appl. 68, 69–80 (2017)

    Article  Google Scholar 

  8. M. G. Omran, A. Engelbrecht, A. Salman, An overview of clustering methods, Intell. Data Anal. (2007)

    Google Scholar 

  9. K. Khan, S. U. Rehman, K. Aziz, S. Fong, S. Sarasvady, DBSCAN: Past, present and future, in The fifth international conference on the applications of digital information and web technologies (ICADIWT 2014), (IEEE, 2014), (pp. 232–238)

    Google Scholar 

  10. J. Tobin, M. Zhang, DCF: an efficient and robust density-based clustering method, in 2021 IEEE International Conference on Data Mining (ICDM) (IEEE, 2021), pp. 629–638

    Google Scholar 

  11. H. C. Bao, Z. C. Juan, The research of speaker recognition based on GMM and SVM. in 2012 international conference on system science and engineering (ICSSE) (IEEE, 2012), pp. 373–375

    Google Scholar 

  12. J.M. Górriz, F. Segovia, J. Ramírez, A. Lassl, D. Salas-Gonzalez, GMM based SPECT image classification for the diagnosis of Alzheimer’s disease. Appl. Soft Comput. 11(2), 2313–2325 (2011)

    Article  Google Scholar 

  13. A. Salamzadeh, P. Ebrahimi, M. Soleimani, M. Fekete-Farkas, Grocery apps and consumer purchase behavior: application of Gaussian mixture model and multi-layer perceptron algorithm. J. Risk Financ. Manag. 15(10), 424 (2022)

    Article  Google Scholar 

  14. A. Aali-Bujari, F. Venegas-Martínez, G. Pérez-Lechuga, Impact of the stock market capitalization and the banking spread in growth and development in Latin American: a panel data estimation with System GMM. Contaduría y administración 62(5), 1427–1441 (2017)

    Article  Google Scholar 

  15. C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    Article  Google Scholar 

  16. B. Scholkopf, S. Mika, C.J. Burges, P. Knirsch, K.R. Muller, G. Ratsch, A.J. Smola, Input space versus feature space in kernel-based methods. IEEE Trans. Neural Netw. 10(5), 1000–1017 (1999)

    Article  Google Scholar 

  17. A. Razaque, B.H. Frej, M., Almi’ani, M., Alotaibi, M., & Alotaibi, B., Improved support vector machine enabled radial basis function and linear variants for remote sensing image classification. Sensors 21(13), 4431 (2021)

    Article  Google Scholar 

  18. M. Vatankhah, V. Asadpour, R. Fazel-Rezai, Perceptual pain classification using ANFIS adapted RBF kernel support vector machine for therapeutic usage. Appl. Soft Comput. 13(5), 2537–2546 (2013)

    Article  Google Scholar 

  19. K. Soman, A. Sathiya, N. Suganthi, Classification of stress of automobile drivers using radial basis function kernel support vector machine, in International Conference on Information Communication and Embedded Systems (ICICES2014) (IEEE, 2014), pp. 1–5

    Google Scholar 

  20. H. Byun, S. Lee, Applications of support vector machines for pattern recognition: a survey. in International workshop on support vector machines (Springer Berlin Heidelberg, Berlin, Heidelberg, 2002), pp. 213–236

    Google Scholar 

  21. P. Birzhandi, K.T. Kim, H.Y. Youn, Reduction of training data for support vector machine: a survey. Soft. Comput. 26(8), 3729–3742 (2022)

    Article  Google Scholar 

  22. L. Zeyang, Research on intelligent acceleration algorithm for big data mining in communication network based on support vector machine, in 2021 IEEE 4th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), (IEEE, 2021), pp. 479–483

    Google Scholar 

  23. Z. Tingyu, Short-term stock trend prediction based on improved SVR, in 2020 7th international conference on information science and control engineering (ICISCE) (IEEE, 2020), pp. 1283–1286

    Google Scholar 

  24. G. Bathla, Stock Price prediction using LSTM and SVR. in 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC) (IEEE, 2020), pp. 211–214)

    Google Scholar 

  25. D. Wu, S. Wang, Comparison of road traffic accident prediction effects based on SVR and BP neural network, in 2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), Vol. 1. (IEEE, 2020), pp. 1150–1154

    Google Scholar 

  26. J. Han, M. Kamber, J. Pei, (2012). Data mining concepts and techniques third edition. In University of Illinois at Urbana-Champaign Micheline Kamber Jian Pei Simon Fraser University

    Google Scholar 

  27. R. C. Barros, M. P. Basgalupp, A. C De Carvalho, A. A. Freitas (2011) A survey of evolutionary algorithms for decision-tree induction. IEEE Trans. Syst. Man Cybernetics Part C (Appl. Rev.) 42(3), 291–312

    Google Scholar 

  28. J. R. Quinlan, Discovering rules by induction from large collections of examples. Expert Syst. Micro Electr. Age (1979)

    Google Scholar 

  29. J. R. Quinlan, C4. 5: programs for machine learning. Elsevier (2014)

    Google Scholar 

  30. L. Breiman, Classification and regression trees (Routledge, 2017)

    Book  Google Scholar 

  31. S. Fletcher, M.Z. Islam, Decision tree classification with differential privacy: a survey. ACM Comput. Survey. (CSUR) 52(4), 1–33 (2019)

    Article  Google Scholar 

  32. K. P. Murphy, Machine learning: a probabilistic perspective. MIT press (2012)

    Google Scholar 

  33. J.R. Quinlan, Improved use of continuous attributes in C4. 5. J. Artif. Intell. Res. 4, 77–90 (1996)

    Article  Google Scholar 

  34. L. Breiman, Random forests. Machine Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  35. L. Breiman, Consistency for a simple model of random forests (University of California at Berkeley, Technical Report, 2004), p.670

    Google Scholar 

  36. M. Dagdoug, C. Goga, D. Haziza, Model-assisted estimation through random forests in finite population sampling. J. Am. Stat. Assoc. 118(542), 1234–1251 (2023)

    Article  MathSciNet  Google Scholar 

  37. D. Ghosh, J. Cabrera, Enriched random forest for high dimensional genomic data. IEEE/ACM Trans. Comput. Biol. Bioinf. 19(5), 2817–2828 (2021)

    Article  Google Scholar 

  38. A. Verikas, A. Gelzinis, M. Bacauskiene, Mining data with random forests: a survey and results of new tests. Pattern Recogn. 44(2), 330–349 (2011)

    Article  Google Scholar 

  39. S. Milanović, N. Marković, D. Pamučar, L. Gigović, P. Kostić, S.D. Milanović, Forest fire probability mapping in eastern Serbia: logistic regression versus random forest method. Forests 12(1), 5 (2020)

    Article  Google Scholar 

  40. E. Scornet, G. Biau, J. P. Vert, (2015) Consistency of random forests

    Google Scholar 

  41. E. Y. Fu, M. X. Huang, H. V. Leong, G. Ngai, Cross-species learning: a low-cost approach to learning human fight from animal fight. in Proceedings of the 26th ACM international conference on Multimedia (2018), pp. 320–327

    Google Scholar 

  42. W.C. Tam, E.Y. Fu, J. Li, R. Peacock, P. Reneke, G. Ngai, M.X. Huang, Real-time flashover prediction model for multi-compartment building structures using attention based recurrent neural networks. Expert Syst. Appl. 223, 119899 (2023)

    Article  Google Scholar 

  43. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  44. E. Y. Fu, M. W. Ngai, Using motion histories for eye contact detection in multiperson group conversations, in Proceedings of the 29th ACM International Conference on Multimedia (2021), pp. 4873–4877

    Google Scholar 

  45. T. C. Kwok, E. Y. Fu, E. Y. Wu, M. X. Huang, G. Ngai, H. V. Leong, Every little movement has a meaning of its own: using past mouse movements to predict the next interaction. in 23rd International Conference on Intelligent User Interfaces (2018), pp. 397–401

    Google Scholar 

  46. B. Guo, C. Zhang, J. Liu, X. Ma, Improving text classification with weighted word embeddings via a multi-channel TextCNN model. Neurocomputing 363, 366–374 (2019)

    Article  Google Scholar 

  47. L. Meng, Z. Peng, J. Zhou, J. Zhang, Z. Lu, A. Baumann, Y. Du, Real-time detection of ground objects based on unmanned aerial vehicle remote sensing with deep learning: Application in excavator detection for pipeline safety. Remote Sensing 12(1), 182 (2020)

    Article  Google Scholar 

  48. C. Li, Y. Wang, D. Li, D. Chu, M. Ma, An effective method of evaluating pension service quality using multi-dimension attention convolutional neural networks. Int. J. Software Eng. Knowl. Eng. 31(04), 533–543 (2021)

    Article  Google Scholar 

  49. A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional neural networks. Adv Neural Inform. Process. Syst. 25 (2012)

    Google Scholar 

  50. J. Ren, Z. Zhang, J. Fan, H. Zhang, M. Xu, M. Wang, Robust low-rank deep feature recovery in cnns: toward low information loss and fast convergence. in 2021 IEEE International Conference on Data Mining (ICDM) (IEEE, 2021), pp. 529–538

    Google Scholar 

  51. K. O'Shea, R. Nash, An introduction to convolutional neural networks. ArXiv preprint arXiv:1511.08458 (2015)

  52. M. Coşkun, A. Uçar, Ö. Yildirim, Y. Demir, Face recognition based on convolutional neural network. in 2017 International Conference on Modern Electrical and Energy Systems (MEES) (IEEE, 2017), pp. 376–379

    Google Scholar 

  53. D. Mehta, H. Rhodin, D. Casas, P. Fua, O. Sotnychenko, W. Xu, C. Theobalt, Monocular 3d human pose estimation in the wild using improved cnn supervision. in 2017 international conference on 3D vision (3DV) (IEEE, 2017), pp. 506–516

    Google Scholar 

  54. K. Krafka, A. Khosla, P. Kellnhofer, H. Kannan, S. Bhandarkar, W. Matusik, A. Torralba, Eye tracking for everyone. in Proceedings of the IEEE conference on computer vision and pattern recognition (2016), pp. 2176–2184

    Google Scholar 

  55. A. Dhillon, G.K. Verma, Convolutional neural network: a review of models, methodologies and applications to object detection. Prog. Artificial Intell. 9(2), 85–112 (2020)

    Article  Google Scholar 

  56. Z. He, Deep learning in image classification: a survey report. in 2020 2nd International Conference on Information Technology and Computer Application (ITCA) (IEEE, 2020), pp. 174–177

    Google Scholar 

  57. T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, S. Khudanpur, Recurrent neural network based language model. In Interspeech , Vol. 2, No. 3 (2010), pp. 1045–1048

    Google Scholar 

  58. D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate. ArXiv preprint arXiv:1409.0473 (2014)

  59. A. N. Jagannatha, H. Yu, Structured prediction models for RNN based sequence labeling in clinical text. in Proceedings of the conference on empirical methods in natural language processing. Conference on empirical methods in natural language processing, Vol. 2016 (NIH Public Access, 2016), p. 856

    Google Scholar 

  60. S.A. Siddiqui, A. Salman, M.I. Malik, F. Shafait, A. Mian, M.R. Shortis, E.S. Harvey, Automatic fish species classification in underwater videos: exploiting pre-trained deep neural network models to compensate for limited labelled data. ICES J. Mar. Sci. 75(1), 374–389 (2018)

    Article  Google Scholar 

  61. T. Alshalali, D. Josyula, Fine-tuning of pre-trained deep learning models with extreme learning machine. in 2018 International Conference on Computational Science and Computational Intelligence (CSCI) (IEEE, 2018), pp. 469–473

    Google Scholar 

  62. E. Y. Fu, Z. Yang, H. V. Leong, G. Ngai, C. W. Do, L. Chan, Exploiting active learning in novel refractive error detection with smartphones. in Proceedings of the 28th ACM international conference on multimedia (2020) pp. 2775–2783

    Google Scholar 

  63. A.K. Jain, J. Mao, K.M. Mohiuddin, Artificial neural networks: a tutorial. Computer 29(3), 31–44 (1996)

    Article  Google Scholar 

  64. D. Ulyanov, A. Vedaldi, V. Lempitsky, Deep image prior. in Proceedings of the IEEE conference on computer vision and pattern recognition (2018), pp. 9446–9454

    Google Scholar 

  65. D. E. Rumelhart, G. E. Hinton, R. J. Williams. Learning internal representations by error propagation (1985)

    Google Scholar 

  66. L. Bottou, Stochastic gradient learning in neural networks. Proc. Neuro-Nımes 91(8), 12 (1991)

    Google Scholar 

  67. S. Ruder, An overview of gradient descent optimization algorithms. ArXiv preprint arXiv:1609.04747 (2016)

  68. J. Wang, E. Y. Fu, G. Ngai, H. V. Leong, H. V., Huang, M. X. (2019). Detecting stress from mouse-gaze attraction. in Proceedings of the 34th ACM/SIGAPP symposium on applied computing, pp. 692–700

    Google Scholar 

  69. J. Li, C. Brown, D.J. Dzikowicz, M.G. Carey, W.C. Tam, M.X. Huang, Towards real-time heart health monitoring in firefighting using convolutional neural networks. Fire Saf. J. 140, 103852 (2023)

    Article  Google Scholar 

  70. Y. Wang, S. C. F. Chan, G. Ngai, Applicability of demographic recommender system to tourist attractions: a case study on trip advisor. in 2012 IEEE/WIC/ACM international conferences on web intelligence and intelligent agent technology (IEEE, 2012), Vol. 3, pp. 97–101

    Google Scholar 

  71. Y. Wang, S.C.F. Chan, H.V. Leong, G. Ngai, N. Au, Multi-dimension reviewer credibility quantification across diverse travel communities. Knowl. Inf. Syst. 49, 1071–1096 (2016)

    Article  Google Scholar 

  72. W.C. Tam, E.Y. Fu, A. Mensch, A. Hamins, C. You, G. Ngai, va Leong, H., Prevention of cooktop ignition using detection and multi-step machine learning algorithms. Fire Saf. J. 120, 103043 (2021)

    Article  Google Scholar 

  73. W.C. Tam, E.Y. Fu, J. Li, X. Huang, J. Chen, M.X. Huang, A spatial temporal graph neural network model for predicting flashover in arbitrary building floorplans. Eng. Appl. Artif. Intell. 115, 105258 (2022)

    Article  Google Scholar 

  74. Y. Chen, J. Wang, B. Zhu, M. Tang, H. Lu, Pixelwise deep sequence learning for moving object detection. IEEE Trans. Circuits Syst. Video Technol. 29(9), 2567–2579 (2017)

    Article  Google Scholar 

  75. A.A. Ali, T.A. El-Hafeez, Y.K. Mohany, An accurate system for face detection and recognition. J. Adv. Math. Comput. Sci. 33(3), 1–19 (2019)

    Article  Google Scholar 

  76. S. Ren, K. He, R. Girshick, J. Sun, Faster r-cnn: towards real-time object detection with region proposal networks. in Advances in neural information processing systems, 28 (2015)

    Google Scholar 

  77. M. Babaee, D.T. Dinh, G. Rigoll, A deep convolutional neural network for video sequence background subtraction. Pattern Recogn. 76, 635–649 (2018)

    Article  Google Scholar 

  78. B. Heo, K. Yun, J. Y. Choi, Appearance and motion based deep learning architecture for moving object detection in moving camera. in 2017 IEEE international conference on image processing (ICIP), (IEEE, 2017), pp. 1827–1831

    Google Scholar 

  79. E. D. Tejada, P. A. Rodriguez, Moving object detection in videos using principal component pursuit and convolutional neural networks. in 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP) (IEEE, 2017), pp. 793–797

    Google Scholar 

  80. D. Lu, Q. Weng, A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 28(5), 823–870 (2007)

    Article  Google Scholar 

  81. M. Ulrich, T. Hess, S. Abdulatif, B. Yang, Person recognition based on micro-Doppler and thermal infrared camera fusion for firefighting. in 2018 21st international conference on information fusion (FUSION) (IEEE, 2018, July), pp. 919–926

    Google Scholar 

  82. J.H. Kim, B.Y. Lattimer, Real-time probabilistic classification of fire and smoke using thermal imagery for intelligent firefighting robot. Fire Saf. J. 72, 40–49 (2015)

    Article  Google Scholar 

  83. S. Ganapathi Subramanian, M. Crowley, Using spatial reinforcement learning to build forest wildfire dynamics models from satellite images. Front ICT 5, 6 (2018)

    Article  Google Scholar 

  84. C. Yuan, Z. Liu, Y. Zhang, UAV-based forest fire detection and tracking using image processing techniques. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS) (IEEE, 2015), pp. 639–643

    Google Scholar 

  85. S. Frizzi, R. Kaabi, M. Bouchouicha, J. M. Ginoux, E. Moreau, F. Fnaiech, Convolutional neural network for video fire and smoke detection. in IECON 2016–42nd Annual Conference of the IEEE Industrial Electronics Society (IEEE, 2016), pp. 877–882

    Google Scholar 

  86. M. Ngai, E. Fu, A. Tam, A. Yang, G. Ngai, Finding the signal from the smoke: a real-time, unattended fire prevention system using 3D CNNs. J. Student Res. 11(3) (2022)

    Google Scholar 

  87. D. E. Shasha, Y. Zhu, High performance discovery in time series: techniques and case studies. Springer Science & Business Media (2004)

    Google Scholar 

  88. R. Agrawal, C. Faloutsos, A. Swami, Efficient similarity search in sequence databases. in Proceedings of the Fourth International Conference on Foundations of Data Organization and Algorithms (Springer, Berlin, Heidelberg, 1993), pp. 69–84

    Google Scholar 

  89. T.C. Fu, A review on time series data mining. Eng. Appl. Artif. Intell. 24(1), 164–181 (2011)

    Article  Google Scholar 

  90. A. Toujani, H. Achour, A data mining framework for forest fire mapping. in Handbook of Research on Geographic Information Systems Applications and Advancements (IGI Global, 2017), pp. 214–237

    Google Scholar 

  91. L. Sacchi, C. Larizza, C. Combi, R. Bellazzi, Data mining with temporal abstractions: learning rules from time series. Data Min. Knowl. Disc. 15, 217–247 (2007)

    Article  MathSciNet  Google Scholar 

  92. W. Bao, J. Yue, Y. Rao, A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PLoS ONE 12(7), e0180944 (2017)

    Article  Google Scholar 

  93. P. Esling, C. Agon, Time-series data mining. ACM Comput Surv (CSUR) 45(1), 1–34 (2012)

    Article  Google Scholar 

  94. J. Lin, E. Keogh, S. Lonardi, B. Chiu, A symbolic representation of time series, with implications for streaming algorithms. in Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery (2003), pp. 2–11

    Google Scholar 

  95. D. J. Berndt, J. Clifford, Using dynamic time warping to find patterns in time series. in KDD workshop, Vol. 10, No. 16 (1994), pp. 359–370

    Google Scholar 

  96. A. E. Hamins, W. C. Tam, Z. J. Lu, K. Markell, C. You, M. Kupferschmid, Sensors and machine learning models to prevent cooktop ignition and ignore normal cooking. Fire Technol. 1–24 (2021)

    Google Scholar 

  97. J. Wang, W.C. Tam, Y. Jia, R. Peacock, P. Reneke, E.Y. Fu, T. Cleary, P-Flash–A machine learning-based model for flashover prediction using recovered temperature data. Fire Saf. J. 122, 103341 (2021)

    Article  Google Scholar 

  98. T. Zhang, Z. Wang, H.Y. Wong, W.C. Tam, X. Huang, F. Xiao, Real-time forecast of compartment fire and flashover based on deep learning. Fire Saf. J. 130, 103579 (2022)

    Article  Google Scholar 

  99. K. Mishev, A. Gjorgjevikj, I. Vodenska, L.T. Chitkushev, D. Trajanov, Evaluation of sentiment analysis in finance: from lexicons to transformers. IEEE access 8, 131662–131682 (2020)

    Article  Google Scholar 

  100. M. Maia, J. E. Sales, A. Freitas, S. Handschuh, M. Endres, A comparative study of deep neural network models on multi-label text classification in finance. in 2021 IEEE 15th International Conference on Semantic Computing (ICSC) (IEEE, 2021), pp. 183–190

    Google Scholar 

  101. Hu, X. (2021, December). Stock price prediction based on temporal fusion transformer. In 2021 3rd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI) (pp. 60–66). IEEE.

    Google Scholar 

  102. D. P. Dao, H. J. Yang, N. H. Ho, S. Pant, S. H. Kim, G. S. Lee, Survival analysis based on lung tumor segmentation using global context-aware transformer in multimodality. in 2022 26th International Conference on Pattern Recognition (ICPR) (IEEE, 2022), pp. 5162–5169

    Google Scholar 

  103. M. Li, W. Cai, K. Verspoor, S. Pan, X. Liang, X. Chang, Cross-modal clinical graph transformer for ophthalmic report generation. in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022), pp. 20656–20665

    Google Scholar 

  104. L. Liu, X. Su, H. Guo, D. Zhu, A transformer-based medical visual question answering model. in 2022 26th International Conference on Pattern Recognition (ICPR) (IEEE, 2022), pp. 1712–1718

    Google Scholar 

  105. Y. Fang, S. Shi, J. Fang, W. Yin, SPRNet: sitting posture recognition using improved vision transformer. in 2022 International Joint Conference on Neural Networks (IJCNN) (IEEE, 2022), pp. 1–6

    Google Scholar 

  106. S. Mandia, K. Singh, R. Mitharwal, Vision transformer for automatic student engagement estimation. in 2022 IEEE 5th International Conference on Image Processing Applications and Systems (IPAS) (IEEE, 2022), pp. 1–6

    Google Scholar 

  107. S.S. Kusumawardani, S.A.I. Alfarozi, Transformer encoder model for sequential prediction of student performance based on their log activities. IEEE Access 11, 18960–18971 (2023)

    Article  Google Scholar 

  108. J. Lanchantin, T. Wang, V. Ordonez, Y. Qi, General multi-label image classification with transformers. in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021), pp. 16478–16488

    Google Scholar 

  109. D. Tu, X. Min, H. Duan, G. Guo, G. Zhai, W. Shen, End-to-end human-gaze-target detection with transformers. in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2022), pp. 2192–2200

    Google Scholar 

  110. B. Zhang, P. Cui, End-to-end 3D human pose estimation with transformer. in 2022 26th International Conference on Pattern Recognition (ICPR) (IEEE, 2022), pp. 4529–4536

    Google Scholar 

  111. J. W. Hung, J. R. Lin, L. Y. Zhuang, The evaluation study of the deep learning model transformer in speech translation. in 2021 7th International Conference on Applied System Innovation (ICASI) (IEEE, 2021), pp. 30–33

    Google Scholar 

  112. W. C. Tam, E. Y. Fu, R. Peacock, P. Reneke, J. Wang, J. Li, T. Cleary, Generating synthetic sensor data to facilitate machine learning paradigm for prediction of building fire hazard. Fire Technol. 1–22 (2020)

    Google Scholar 

  113. C. Khosla, B. S. Saini, Enhancing performance of deep learning models with different data augmentation techniques: A survey. in 2020 International Conference on Intelligent Engineering and Management (ICIEM) (IEEE, 2020), pp. 79–85

    Google Scholar 

  114. R. Abdrakhmanov, D. Viderman, K. S. Wong, M. Lee, Few-shot learning based on residual neural networks for X-ray image classification. in 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (IEEE, 2022), pp. 1817–1821

    Google Scholar 

  115. F. Zhou, L. Zhang, W. Wei, Z. Bai, Y. Zhang, Meta transfer learning for few-shot hyperspectral image classification. in 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS (IEEE, 2021), pp. 3681–3684

    Google Scholar 

  116. Y. Kim, D. Kang, Y. Mok, S. Kwon, J. Paik, A review on few-shot learning for medical image segmentation. in 2023 International Conference on Electronics, Information, and Communication (ICEIC) (IEEE, 2023), pp. 1–3

    Google Scholar 

  117. C. Wu, B. Wang, S. Liu, X. Liu, P. Wu, TD-sampler: learning a training difficulty based sampling strategy for few-shot object detection. in 2022 7th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA) (IEEE, 2022), pp. 275–279

    Google Scholar 

  118. M. Yu, X. Guo, J. Yi, S. Chang, S. Potdar, S., Y. Cheng, B. Zhou, Diverse few-shot text classification with multiple metrics. ArXiv preprint arXiv:1805.07513 (2018)

  119. N. Muthukumar, Few-shot learning text classification in federated environments. In 2021 Smart Technologies, Communication and Robotics (STCR) (IEEE, 2021), pp. 1–3

    Google Scholar 

Download references

Acknowledgements

This work was in part supported by the Hong Kong Polytechnic University under Grant P0039489, and Shenzhen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Yujun Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Y., Fu, E.Y., Zhai, X., Yang, C., Pei, F. (2024). Introduction of Artificial Intelligence. In: Huang, X., Tam, W.C. (eds) Intelligent Building Fire Safety and Smart Firefighting. Digital Innovations in Architecture, Engineering and Construction. Springer, Cham. https://doi.org/10.1007/978-3-031-48161-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48161-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48160-4

  • Online ISBN: 978-3-031-48161-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics