Skip to main content

Robotic Firefighting: A Review and Future Perspective

  • Chapter
  • First Online:
Intelligent Building Fire Safety and Smart Firefighting

Abstract

Firefighters are constantly exposed to the danger of hot, dark, and toxic fire environments during their firefighting operations and suffer injuries now and then. Today, firefighting robots are gradually deployed to support fire services and enter the explosive, toxic, and smoky fire scene for detection, mitigation, and rescue. Robotic firefighting aims to reduce the risk of casualties and improve disposal efficiency significantly. However, firefighting robots are still far from massive applications, because of the problematic remote control in complex fire incidents and their limited autonomy and small working range. There is still an urgent need for intelligent and autonomous firefighting robots, as well as research and development to expand their firefighting tasks and reliability. This chapter reviews the development of firefighting robots and UAVs over the last six decades, from early master-slave remote control to the latest sensor-driven semi-autonomous control. It also summarizes the classification of firefighting robots and their respective development directions. Finally, we point out the key technologies and challenges in the autonomous intelligent firefighting robots and predict the future application of firefighting robots and their interaction with fire services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.P. Moravec, Robot, Encycl. Br (2023). https://www.britannica.com/technology/robot-technology

  2. G. Steinbauer, Expert Systems (Graz ) Heuristic Search ( Klagenfurt ) Shakey, the Robot office environment (n.d.), pp. 1–58.

    Google Scholar 

  3. N.G. Hockstein, C.G. Gourin, R.A. Faust, D.J. Terris, A history of robots: From science fiction to surgical robotics. J. Robot. Surg. 1, 113–118 (2007). https://doi.org/10.1007/s11701-007-0021-2

    Article  Google Scholar 

  4. B.Y. Lattimer, X. Huang, M.A. Delichatsios, Y.A. Levendis, K. Kochersberger, S. Manzello, P. Frank, T. Jones, J. Salvador, C. Delgado, E. Angelats, M.E. Parés, D. Martín, S. McAllister, S. Suzuki, Use of unmanned aerial systems in outdoor firefighting. Fire Technol. (2023). https://doi.org/10.1007/s10694-023-01437-0

    Article  Google Scholar 

  5. K. Miyazawa, Fire robots developed by the Tokyo fire department. Adv. Robot. 16, 553–556 (2002). https://doi.org/10.1163/156855302320535953

    Article  Google Scholar 

  6. A. Kumar, A. Gaur, A. Singh, A. Kumar, K.S. Kulkarni, S. Lala, K. Kapoor, V. Srivastava, S.C. Mukhopadhyay, Fire sensing technologies: A review. IEEE Sens. J. 19, 3191–3202 (2019). https://doi.org/10.1109/JSEN.2019.2894665

    Article  Google Scholar 

  7. P. Liu, H. Yu, S. Cang, L. Vladareanu, Robot-assisted smart firefighting and interdisciplinary perspectives, in 2016 22nd int conf autom comput icac 2016 tackling new challenges autom comput (2016), pp. 395–401. https://doi.org/10.1109/IConAC.2016.7604952

  8. R. Bogue, The role of robots in firefighting. Ind. Rob. 48, 174–178 (2020). https://doi.org/10.1108/IR-10-2020-0222

    Article  Google Scholar 

  9. A.O. Oke, A. Afolabi, Development of a robotic arm for dangerous object disposal, in 2014 6th Int Conf Comput Sci Inf Technol CSIT 2014—Proc (2014), pp. 153–160. https://doi.org/10.1109/CSIT.2014.6805994

  10. R. Edlinger, C. Fols, A. Nuchter, An innovative pick-up and transport robot system for casualty evacuation, in SSRR 2022—IEEE int symp safety, secur rescue robot (2022), pp. 67–73. https://doi.org/10.1109/SSRR56537.2022.10018818

  11. Y. Tamura, H. Amano, J. Ota, Analysis of firefighting skill with a teleoperated robot. Abs. Rob. J. 7(1) (2020). https://doi.org/10.1186/s40648-020-00177-y

  12. Y. Tamura, H. Amano, J. Ota, Analysis of firefighting skill with a teleoperated robot, ROBOMECH J. 7, (2020). https://doi.org/10.1186/s40648-020-00177-y

  13. P. Biswal, P.K. Mohanty, Development of quadruped walking robots: A review. Ain Shams Eng. J. 12, 2017–2031 (2021). https://doi.org/10.1016/j.asej.2020.11.005

    Article  Google Scholar 

  14. M. Bjelonic, C.D. Bellicoso, Y. De Viragh, D. Sako, F.D. Tresoldi, F. Jenelten, M. Hutter, Keep rollin’-whole-body motion control and planning for wheeled quadrupedal robots. IEEE Robot. Autom. Lett. 4, 2116–2123 (2019). https://doi.org/10.1109/LRA.2019.2899750

    Article  Google Scholar 

  15. Á. Madridano, A. Al-Kaff, P. Flores, D. Martín, A. de la Escalera, Software architecture for autonomous and coordinated navigation of uav swarms in forest and urban firefighting. Appl. Sci. 11, 1–36 (2021). https://doi.org/10.3390/app11031258

    Article  Google Scholar 

  16. J.J. Roldán-Gómez, E. González-Gironda, A. Barrientos, A survey on robotic technologies for forest firefighting: Applying drone swarms to improve firefighters’ efficiency and safety. Appl. Sci. 11, 1–18 (2021). https://doi.org/10.3390/app11010363

    Article  Google Scholar 

  17. M.M. Valero, O. Rios, E. Planas, E. Pastor, Automated location of active fire perimeters in aerial infrared imaging using unsupervised edge detectors. Int. J. Wildl. Fire. 27, 241–256 (2018). https://doi.org/10.1071/WF17093

    Article  Google Scholar 

  18. P. Pecho, P. Magdolenová, M. Bugaj, Unmanned aerial vehicle technology in the process of early fire localization of buildings. Transp. Res. Procedia. 40, 461–468 (2019). https://doi.org/10.1016/j.trpro.2019.07.067

    Article  Google Scholar 

  19. H. Qin, J.Q. Cui, J. Li, Y. Bi, M. Lan, M. Shan, W. Liu, K. Wang, F. Lin, Y.F. Zhang, B.M. Chen, Design and implementation of an unmanned aerial vehicle for autonomous firefighting missions, in IEEE Int Conf Control Autom ICCA 2016-July (2016), pp. 62–67. https://doi.org/10.1109/ICCA.2016.7505253

  20. C. Viegas, B. Chehreh, J. Andrade, J. Lourenço, Tethered UAV with combined multi-rotor and water jet propulsion for forest fire fighting. J. Intell. Robot. Syst. Theory Appl. 104, 1–13 (2022). https://doi.org/10.1007/s10846-021-01532-w

    Article  Google Scholar 

  21. J. Whitman, N. Zevallos, M. Travers, H. Choset, P. Liljebäck, Ø. Stavdahl, A. Beitnes, Snake robot urban search after the 2017 Mexico City Earthquake, in 2018 IEEE Int symp safety, Secur rescue robot SSRR 2018 (2006), pp. 7–12. https://doi.org/10.1109/SSRR.2018.8468633

  22. Shipboard Autonomous Firefighting Robot (SAFFiR)—Office of Naval Research (2016). http://www.onr.navy.mil/en/MediaCenter/Fact-Sheets/Shipboard-Robot-Saffir.aspx

  23. H. Ando, Y. Ambe, T. Yamaguchi, M. Konyo, K. Tadakuma, S. Maruyama, S. Tadokoro, Fire fighting tactics with aerial hose-type robot “dragon firefighter,” in Proc IEEE work adv robot its soc impacts, ARSO 2019-Octob (2019), pp. 291–297. https://doi.org/10.1109/ARSO46408.2019.8948716

  24. P. Sun, R. Bisschop, H. Niu, X. Huang, A review of battery fires in electric vehicles (Springer US, 2020). https://doi.org/10.1007/s10694-019-00944-3

  25. K.A.P. Perumal, M.A.M. Ali, Z.H. Yahya, Fire fighter robot with night vision camera, in Proc—019 IEEE 15th Int Colloq Signal Process. Its Appl CSPA 2019 (2019), pp. 270–274. https://doi.org/10.1109/CSPA.2019.8696077

  26. A.E. Çetin, K. Dimitropoulos, B. Gouverneur, N. Grammalidis, O. Günay, Y.H. Habiboǧlu, B.U. Töreyin, S. Verstockt, Video fire detection—Review. Digit. Signal Process. A Rev. J. 23, 1827–1843 (2013). https://doi.org/10.1016/j.dsp.2013.07.003

    Article  Google Scholar 

  27. J.W. Starr, B.Y. Lattimer, Evaluation of navigation sensors in fire smoke environments. Fire Technol. 50, 1459–1481 (2014). https://doi.org/10.1007/s10694-013-0356-3

    Article  Google Scholar 

  28. J. Zhu, W. Li, D. Lin, H. Cheng, G. Zhao, Intelligent fire monitor for fire robot based on infrared image feedback control. Fire Technol. 56, 2089–2109 (2020). https://doi.org/10.1007/s10694-020-00964-4

    Article  Google Scholar 

  29. M. Bhattarai, M. Martinez-Ramon, A deep learning framework for detection of targets in thermal images to improve firefighting. IEEE Access. 8, 88308–88321 (2020). https://doi.org/10.1109/ACCESS.2020.2993767

    Article  Google Scholar 

  30. J.H. Kim, S. Jo, B.Y. Lattimer, Feature selection for intelligent firefighting robot classification of fire, smoke, and thermal reflections using thermal infrared images, J. Sensors. 2016, (2016). https://doi.org/10.1155/2016/8410731

  31. J.H. Kim, J.W. Starr, B.Y. Lattimer, Firefighting robot stereo infrared vision and radar sensor fusion for imaging through smoke. Fire Technol. 51, 823–845 (2015). https://doi.org/10.1007/s10694-014-0413-6

    Article  Google Scholar 

  32. J.H. Kim, B.Y. Lattimer, Real-time probabilistic classification of fire and smoke using thermal imagery for intelligent firefighting robot. Fire Safety. J. 7240–7249 (2015). https://doi.org/10.1016/j.firesaf.2015.02.007

  33. F. Ding, A. Palffy, D.M. Gavrila, C.X. Lu, Hidden Gems: 4D radar scene flow learning using cross-modal supervision (2023)

    Google Scholar 

  34. P.F. McManamon, Introduction to LiDAR, LiDAR Technol. Syst., 1–18 (2019). https://doi.org/10.1117/3.2518254.ch1

  35. D. Kohl, J. Kelleter, H. Petig, Detection of fires by gas sensors. Sensors Updat. 9, 161–223 (2001). https://doi.org/10.1002/1616-8984(200105)9:1%3c161::aid-seup161%3e3.0.co;2-a

    Article  Google Scholar 

  36. X. Zhang, X. Wu, X. Huang, Smart real-time forecast of transient tunnel fires by a dual-agent deep learning model. Tunn. Undergr. Sp. Technol. 129, 104631 (2022). https://doi.org/10.1016/j.tust.2022.104631

    Article  Google Scholar 

  37. J.-H. Park, B.-W. Kim, D.-J. Park, M.-J. Kim, A system architecture of wireless communication for fire-fighting robots. IFAC (2008). https://doi.org/10.3182/20080706-5-kr-1001.00892

    Article  Google Scholar 

  38. G.N. DeSouza, A.C. Kak, Vision for mobile robot navigation: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 24, 237–267 (2002). https://doi.org/10.1109/34.982903

    Article  Google Scholar 

  39. K. Dhwaj, J.M. Kovitz, H. Tian, L.J. Jiang, T. Itoh, Half-mode cavity-based planar filtering antenna with controllable transmission zeroes. IEEE Antennas Wirel. Propag. Lett. 17, 833–836 (2018). https://doi.org/10.1109/LAWP.2018.2818058

    Article  Google Scholar 

  40. S. Thrun, Probabilistic robotics. Commun. ACM 45, 52–57 (2002). https://doi.org/10.1145/504729.504754

    Article  Google Scholar 

  41. K. Qian, Z. He, X. Zhang, 3D Point cloud generation with millimeter-wave radar, Proc. ACM Interactive, Mobile, Wearable Ubiquitous Technol. 4 (2020). https://doi.org/10.1145/3432221.

  42. D. Scaramuzza, F. Fraundorfer, Tutorial: Visual odometry. IEEE Robot. Autom. Mag. 18, 80–92 (2011). https://doi.org/10.1109/MRA.2011.943233

    Article  Google Scholar 

  43. K. Saulnier, N. Atanasov, G.J. Pappas, V. Kumar, Information theoretic active exploration in signed distance fields, in Proc—IEEE International Conference Robot Autom (2020), pp. 4080–4085. https://doi.org/10.1109/ICRA40945.2020.9196882

  44. J. Borenstein, Y. Koren, Real-time obstacle avoidance for fast mobile robots. IEEE Trans. Syst. Man Cybern. 19, 1179–1187 (1989). https://doi.org/10.1109/21.44033

    Article  Google Scholar 

  45. J. Gancet, E. Motard, A. Naghsh, C. Roast, M.M. Arancon, L. Marques, User interfaces for human robot interactions with a swarm of robots in support to firefighters, in Proc—IEEE International Conference Robot Autom (2010), pp. 2846–2851. https://doi.org/10.1109/ROBOT.2010.5509890

  46. International Electrotechnical Commission(IEC), IEC 60529:1989+AMD1:1999+AMD2:2013 CSV—Degrees of protection provided by enclosures (IP Code), (2013). https://webstore.iec.ch/publication/2452

  47. T. AlHaza, A. Alsadoon, Z. Alhusinan, M. Jarwali, K. Alsaif, New concept for indoor fire fighting robot, procedia—Soc. Behav. Sci. 195, 2343–2352 (2015). https://doi.org/10.1016/j.sbspro.2015.06.191

    Article  Google Scholar 

  48. B. Sophia, KiwiBot catches fire outside Martin Luther King Jr. Student Union, Dly (Californian, 2023). https://www.dailycal.org/2018/12/14/kiwibot-catches-fire-outside-mlk-student-union

  49. W. Wang, W. Gao, S. Zhao, W. Cao, Z. Du, Robot protection in the hazardous environments, in Robot Oper Hazard Environment (InTech, 2017). https://doi.org/10.5772/intechopen.69619.

  50. Y. Liu, H. Niu, J. Liu, X. Huang, Layer-to-layer thermal runaway propagation of open-circuit cylindrical li-ion batteries: Effect of ambient pressure, J. Energy Storage. 55, 105709 (2022). https://doi.org/10.1016/j.est.2022.105709.

  51. J. Sun, B. Mao, Q. Wang, Progress on the research of fire behavior and fire protection of lithium ion battery. Fire Saf. J. 120, 103119 (2021). https://doi.org/10.1016/j.firesaf.2020.103119

    Article  Google Scholar 

  52. J. Weng, D. Ouyang, Y. Liu, M. Chen, Y. Li, X. Huang, J. Wang, Alleviation on battery thermal runaway propagation: Effects of oxygen level and dilution gas. J. Power. Sources 509, 230340 (2021). https://doi.org/10.1016/j.jpowsour.2021.230340

    Article  Google Scholar 

  53. Q. Wang, B. Mao, S.I. Stoliarov, J. Sun, A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog. Energy Combust. Sci. 73, 95–131 (2019). https://doi.org/10.1016/j.pecs.2019.03.002

    Article  Google Scholar 

  54. X. Liu, M. Zhang, W. Liu, Design method to modular robot system, in Proc. 2009 ASME/IFToMM Int Conf Reconfigurable Mech Robot ReMAR 2009 (2009), pp. 521–528

    Google Scholar 

  55. M.S. Innocente, P. Grasso, Self-organising swarms of firefighting drones: Harnessing the power of collective intelligence in decentralised multi-robot systems. J. Comput. Sci. 34, 80–101 (2019). https://doi.org/10.1016/j.jocs.2019.04.009

    Article  MathSciNet  Google Scholar 

  56. J. Saez-Pons, L. Alboul, J. Penders, L. Nomdedeu, Multi-robot team formation control in the GUARDIANS project. Ind. Rob. 37, 372–383 (2010). https://doi.org/10.1108/01439911011044831

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by the Hong Kong Research Grants Council Theme-based Research Scheme (T22-505/19-N) and The Hong Kong Polytechnic University (P0045918).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyan Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, M., Chen, X., Huang, X. (2024). Robotic Firefighting: A Review and Future Perspective. In: Huang, X., Tam, W.C. (eds) Intelligent Building Fire Safety and Smart Firefighting. Digital Innovations in Architecture, Engineering and Construction. Springer, Cham. https://doi.org/10.1007/978-3-031-48161-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48161-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48160-4

  • Online ISBN: 978-3-031-48161-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics