Skip to main content

Sensor and Modelling Driven Real-Time Fire Forecast

  • Chapter
  • First Online:
Intelligent Building Fire Safety and Smart Firefighting
  • 359 Accesses

Abstract

Firefighters often face uncertain conditions when entering a building to attack a fire, and have to make decisions based solely on their experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Koo, J. Fraser-Mitchel, S. Welch, Sensor-steered fire simulation. Fire Saf. J. 45(3), 193–205 (2010). https://doi.org/10.1016/j.firesaf.2010.02.003

    Article  Google Scholar 

  2. W. Jahn, G. Rein, J.L. Torero, Forecasting fire growth using an inverse zone modelling approach. Fire Saf. J. 46(3), 81–88 (2011). https://doi.org/10.1016/j.firesaf.2010.10.001

    Article  Google Scholar 

  3. K.J. Overholt, O.A. Ezekoye, Characterizing heat release rates using an inverse fire modeling technique. Fire Technol. 48, 893–909 (2012). https://doi.org/10.1007/s10694-011-0250-9

    Article  Google Scholar 

  4. W. Jahn, G. Rein, J.L. Torero, Forecasting fire dynamics using inverse computational fluid dynamics and tangent linearisation. Adv. Eng. Softw. 47(1), 114–126 (2012). https://doi.org/10.1016/j.advengsoft.2011.12.005

    Article  Google Scholar 

  5. K.J. Overholt, O.A. Ezekoye, Quantitative testing of fire scenario hypotheses: a Bayesian inference approach. Fire Technol. 1–33 (2014). https://doi.org/10.1007/s10694-013-0384-z

  6. T. Beji, S. Verstockt, R. Van de Walle, B. Merci, On the use of real-time video to forecast fire growth in enclosures. Fire Technol. 50(4), 1021–1040 (2014). https://doi.org/10.1007/s10694-012-0262-0

    Article  Google Scholar 

  7. W. Jahn, Using suppression and detection devices to steer CFD fire forecast simulations. Fire Saf. J. 91, 284–290 (2017). https://doi.org/10.1016/j.firesaf.2017.03.062

    Article  Google Scholar 

  8. Y.Y. Chu, V.K.R. Kodur, D. Liang, A Probabilistic inferential algorithm to determine fire source location based on inversion of multidimensional fire parameters. Fire Technol. (2016). https://doi.org/10.1007/s10694-016-0620-4

    Article  Google Scholar 

  9. W. Jahn, F. Sazunic, C. Sing-Long, Towards real-time fire data synthesis using numerical simulations. J. Fire Sci. 1–16 (2021). https://doi.org/10.1177/0734904121993449

  10. A. Cowlard, W. Jahn, C. Abecassis-Empis, G. Rein, J.L. Torero, Sensor assisted fire fighting. Fire Technol. 46(3), 719–741 (2010). https://doi.org/10.1007/s10694-008-0069-1

    Article  Google Scholar 

  11. G. Rein et al., Round-robin study of a priori modelling predictions of the Dalmarnock fire test one. Fire Saf. J. 44(4), 590–602 (2009). https://doi.org/10.1016/j.firesaf.2008.12.008

    Article  Google Scholar 

  12. W.D. Davis, G. Forney, A sensor-driven fire model, in 12th International Conference on Automatic Fire Detection, Gaithersburg, MD: NIST, pp. 494–504 (2001)

    Google Scholar 

  13. E. Kalnay, Atmospheric modeling, data assimilation and predictability (Cambridge University Press, Cambridge, UK, 2003)

    Google Scholar 

  14. E.N. Lorenz, The predictability of a flow which possesses many scales of motion. Tellus 21(3), 289–307 (1969). https://doi.org/10.3402/tellusa.v21i3.10086

    Article  Google Scholar 

  15. D. Zeinali et al., Study of the importance of non-uniform mass density in numerical simulations of fire spread over MDF panels in a corner configuration. Combust. Flame 200, 303–315 (2019). https://doi.org/10.1016/j.combustflame.2018.11.020

    Article  Google Scholar 

  16. S. Sazegara, M. Spearpoint, G. Baker, Benchmarking the single item ignition prediction capability of B-RISK using furniture calorimeter and room-size experiments. Fire Technol. 53(4), 1485–1508 (2017). https://doi.org/10.1007/s10694-016-0642-y

    Article  Google Scholar 

  17. E. Markus, A. Snegirev, E. Kuznetsov, L. Tanklevskiy, Application of the thermal pyrolysis model to predict flame spread over continuous and discrete fire load. Fire Saf. J. 108, 102825 (2019). https://doi.org/10.1016/j.firesaf.2019.102825

  18. M. Lazaro, H. Boehmer, D. Alvear, J.A. Capote, A. Trouve, Numerical simulation of fire growth, transition to flashover, and post-flashover dynamics in the dalmarnock fire test. Fire Saf. Sci. 1, 1377–1388 (2008). https://doi.org/10.3801/IAFSS.FSS.9-1377

    Article  Google Scholar 

  19. V. Novozhilov, Nonlinear dynamical model of compartment fire flashover. J. Eng. Math. 67(4), 387–400 (2010). https://doi.org/10.1007/s10665-009-9333-8

    Article  MathSciNet  Google Scholar 

  20. F. Sazunic, W. Jahn, C. Sing-Long, Interpretable reduced order modeling for fast fire dynamics simulation. Appl. Math. Comput. vol. submitted (2021)

    Google Scholar 

  21. D. Drysdale, An Introduction to Fire Dynamics, 3rd edn. (Wiley & Sons, New York, 2011). ISBN 0-470-31903-1

    Google Scholar 

  22. O. Mariño, F. Muñoz, W. Jahn, Soot production modelling for operational computational fluid dynamics fire simulations. J. Fire Sci. (2020). https://doi.org/10.1177/0734904120905579

    Article  Google Scholar 

  23. I. Glassman, R. Yetter, N. Glumac, Combustion, 5th edn. (Academic Press, 2014). https://doi.org/10.1016/C2011-0-05402-9

  24. J.-W. Kwon, N.a. Dembsey, C.W. Lautenberger, Evaluation of FDS V.4: upward flame spread. Fire Technol. 43(4), 255–284. https://doi.org/10.1007/s10694-007-0020-x

  25. W. Jones, R. Peacock, G. Forney, P. Reneke, CFAST—Consolidated Model of Fire Growth and Smoke Transport, Version 6 (2005)

    Google Scholar 

  26. R.G. Rehm, H.R. Baum, The equations of motion for thermally driven, buoyant flows. J. Res. Natl. Bur. Stand. 83(3), 297 (1978). https://doi.org/10.6028/jres.083.019

    Article  Google Scholar 

  27. H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics (Pearson Education, 2007)

    Google Scholar 

  28. C.C. Lin, L. Wang, Forecasting smoke transport during compartment fires using a data assimilation model. J. Fire Sci. 33(1), 3–21 (2015). https://doi.org/10.1177/0734904114548837

    Article  Google Scholar 

  29. J. Ji, C. Liu, Z. Gao, L. (Leon) Wang, Real-time forecasting of fire in a two-story building using ensemble Kalman filter method. Fire Saf. J. 97, 19–28 (2018). https://doi.org/10.1016/j.firesaf.2018.02.007

  30. J. Nocedal, S. Wright, Numerical Optimization, 2nd edn. (Springer, USA, 2006). ISBN 978-0387-30303-1

    Google Scholar 

  31. A. Griewank, Automatic Differentiation. Princeton Companion to Applied Mathematics, Nicolas Higham Ed., (Princeton University Press, 2014)

    Google Scholar 

  32. R. Kallada Janardhan, S. Hostikka, Predictive computational fluid dynamics simulation of fire spread on wood cribs. Fire Technol. 55(6), 2245–2268 (2019). https://doi.org/10.1007/s10694-019-00855-3

  33. M.L. Würzburger, L. Arnold, Dynamic domain expansion in smoke spread simulations with ARTSS: speedup and overhead. Fire Saf. J. 120(June 2020), 103168 (2021). https://doi.org/10.1016/j.firesaf.2020.103168

  34. W.D. Davis, L.Y. Cooper, A computer model for estimating the response of sprinkler links to compartment fires with draft curtains and fusible link-actuated ceiling vents. Fire Technol. 27(2), 113–127 (1991). https://doi.org/10.1007/BF01470863

    Article  Google Scholar 

  35. L. Zhang, Y. Wang, H. Shi, L. Zhang, Modeling and analyzing 3D complex building interiors for effective evacuation simulations. Fire Saf. J. 53, 1–12 (2012). https://doi.org/10.1016/j.firesaf.2012.06.008

    Article  Google Scholar 

  36. N. Johansson, Evaluation of a zone model for fire safety engineering in large spaces. Fire Saf. J. March, 103122 (2020). https://doi.org/10.1016/j.firesaf.2020.103122

  37. S. Bilyaz, O.A. Ezekoye, Fire smoke transport and opacity reduced-order model (Fire-STORM): a new computer model for high-rise fire smoke simulations 55(3). Springer US (2019). https://doi.org/10.1007/s10694-019-00815-x

  38. F. Colella, G. Rein, R. Borchiellini, J.L. Torero, a novel multiscale methodology for simulating tunnel ventilation flows during fires, 47(1) (2011). https://doi.org/10.1007/s10694-010-0144-2

  39. B. Ralph, R. Carvel, J. Floyd, Coupled hybrid modelling within the fire dynamics simulator: transient transport and mass storage. J. Build. Perform. Simul. 12(5), 685–699 (2019). https://doi.org/10.1080/19401493.2019.1608304

    Article  Google Scholar 

  40. J.M. Watts, Future of fire modeling. Fire Technol. 27 (1991). https://doi.org/10.1007/BF01470860

  41. J.L. Hodges, B.Y. Lattimer, K.D. Luxbacher, Compartment fire predictions using transpose convolutional neural networks. Fire Saf. J. 108(November 2018), 102854 (2019). https://doi.org/10.1016/j.firesaf.2019.102854

  42. B.Y. Lattimer, J.L. Hodges, A.M. Lattimer, Using machine learning in physics-based simulation of fire. Fire Saf. J. 114(July 2019), 102991 (2020). https://doi.org/10.1016/j.firesaf.2020.102991

  43. B. Lafdal et al., Numerical study of the combustion regimes in naturally-vented compartment fires. Fire Saf. J. 131(August 2021), 103604 (2022). https://doi.org/10.1016/j.firesaf.2022.103604

Download references

Acknowledgements

The author would like to recognise the financial support provided by the Timber Innovation Center UC and ANID BASAL FB210015 (CENAMAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Jahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jahn, W. (2024). Sensor and Modelling Driven Real-Time Fire Forecast. In: Huang, X., Tam, W.C. (eds) Intelligent Building Fire Safety and Smart Firefighting. Digital Innovations in Architecture, Engineering and Construction. Springer, Cham. https://doi.org/10.1007/978-3-031-48161-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48161-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48160-4

  • Online ISBN: 978-3-031-48161-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics