Skip to main content

Understanding Spine Biologics for the Access Surgeon

  • Chapter
  • First Online:
Lumbar Spine Access Surgery

Abstract

Fusion is one of the most common techniques in spine surgery used to treat spinal pathology. The goal of a fusion procedure is to obtain a stable construct, to limit pathologic motion, and to maintain deformity correction. While there has been significant advancement in a variety of intraoperative techniques and implant designs to help promote fusion, pseudarthrosis or non-fusion continues to be a common complication and can contribute to poorer patient outcomes and represents a large economic burden to the healthcare system. Biologics are increasingly essential to achieving successful fusion in the spine, and in the last two decades, numerous bone graft substitutes and biologics have come to market.

The purpose of this chapter is to review the background, benefits, and limitations of commonly utilized grafts and biologics including autologous bone, allograft, demineralized bone matrix, bone morphogenic protein, ceramics, and polypeptide-based compounds as well as autologous and allogenic stem cells and gene therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boden SD. Overview of the biology of lumbar spine fusion and principles for selecting a bone graft substitute. Spine (Phila Pa 1976). 1976;2002(27):S26–31. [PMID: 12205416].

    Google Scholar 

  2. Klineberg E, Gupta M, McCarthy I, Hostin R. Detection of pseudarthrosis in adult spinal deformity: the use of health-related quality-of-life outcomes to predict pseudarthrosis. Clin Spine Surg. 2016;29(8):318–22.

    Article  PubMed  Google Scholar 

  3. Jain A, Yeramaneni S, Kebaish KM, Raad M, Gum JL, Klineberg EO, Hassanzadeh H, Kelly MP, Passias PG, Ames CP, Smith JS, Shaffrey CI, Bess S, Lafage V, Glassman S, Carreon LY, Hostin RA, International Spine Study Group. Cost-utility analysis of rhBMP-2 use in adult spinal deformity surgery. Spine (Phila Pa 1976). 2020;45(14):1009–15. https://doi.org/10.1097/BRS.0000000000003442. PMID: 32097274.

    Article  PubMed  Google Scholar 

  4. 2016. https://www.grandviewresearch.com/industry-analysis/orthopedic-implants-market. Accessed 10 Oct 2020.

  5. Rihn JA, Kirkpatrick K, Albert TJ. Graft options in posterolateral and posterior interbody lumbar fusion. Spine (Phila Pa 1976). 2010;35(17):1629–39.

    Article  PubMed  Google Scholar 

  6. Grabowski G, Cornett CA. Bone graft and bone graft substitutes in spine surgery: current concepts and controversies. J Am Acad Orthop Surg. 2013;21(1):51–60.

    Article  PubMed  Google Scholar 

  7. Boden SD, Schimandle JH, Hutton WC, Chen MI. Volvo award in basic sciences. The use of an osteoinductive growth factor for lumbar spinal fusion. Part I: biology of spinal fusion. Spine. 1995;20(24):2626–32.

    Article  CAS  PubMed  Google Scholar 

  8. Boden SD, Sumner DR. Biologic issues in lumbar spinal fusion introduction. Spine. 1995;20(24 suppl):102S–12S.

    Article  CAS  PubMed  Google Scholar 

  9. Gupta A, Kukkar N, Sharif K, Main BJ, Albers CE, El-Amin Iii SF. Bone graft substitutes for spine fusion: a brief review. World J Orthop. 2015;6(6):449–56.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Abdullah KG, Steinmetz MP, Benzel EC, Mroz TE. The state of lumbar fusion extenders. Spine (Phila Pa 1976). 2011;36(20):E1328–34.

    Article  PubMed  Google Scholar 

  11. Sandhu HS, Grewal HS, Parvataneni H. Bone grafting for spinal fusion. Orthop Clin North Am. 1999;30(4):685–98.

    Article  CAS  PubMed  Google Scholar 

  12. Khan WS, Rayan F, Dhinsa BS, Marsh D. An osteoconductive, osteoinductive, and osteogenic tissue-engineered product for trauma and orthopaedic surgery: how far are we? Stem Cells Int. 2012;2012:236231.

    Article  PubMed  Google Scholar 

  13. Tarpada SP, Morris MT, Burton DA. Spinal fusion surgery: a historical perspective. J Orthop. 2017;14(1):134–6.

    Article  PubMed  Google Scholar 

  14. Zdeblick TA. A prospective, randomized study of lumbar fusion. Preliminary results. Spine (Phila Pa 1976). 1993;18:983–91. https://doi.org/10.1097/00007632-199306150-00006.

    Article  CAS  PubMed  Google Scholar 

  15. Cockin J. Autologous bone grafting: complications at the donor site. J Bone Joint Surg. 1971;53:153.

    Google Scholar 

  16. Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis PV. Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury. 2011;42(Suppl 2):S3–15. https://doi.org/10.1016/j.injury.2011.06.015. Epub 2011 Jun 25. PMID: 21704997.

    Article  PubMed  Google Scholar 

  17. Ohtori S, Koshi T, Suzuki M, et al. Uni- and bilateral instrumented posterolateral fusion of the lumbar spine with local bone grafting: a prospective study with a 2-year follow-up. Spine (Phila Pa 1976). 2011;36(26):E1744–8.

    Article  PubMed  Google Scholar 

  18. Hernigou P, Desroches A, Queinnec S, et al. Morbidity of graft harvesting versus bone marrow aspiration in cell regenerative therapy. Int Orthop. 2014;38(9):1855–60.

    Article  PubMed  Google Scholar 

  19. Salama R, Burwell RD, Dickson IR. Recombined grafts of bone and marrow. The beneficial effect upon osteogenesis of impregnating xenograft (heterograft) bone with autologous red marrow. J Bone Joint Surg Br. 1973;55(2):402–17.

    Article  CAS  PubMed  Google Scholar 

  20. Morris MT, Tarpada SP, Cho W. Bone graft materials for posterolateral fusion made simple: a systematic review. Eur Spine J. 2018;27:1856–67. https://doi.org/10.1007/s00586-018-5511-6.

    Article  PubMed  Google Scholar 

  21. Blanco JS, Sears CJ. Allograft bone use during instrumentation and fusion in the treatment of adolescent idiopathic scoliosis. Spine. 1997;22(12):1338–42.

    Article  CAS  PubMed  Google Scholar 

  22. Ehrler DM, Vaccaro AR. The use of allograft bone in lumbar spine surgery. Clin Orthop Relat Res. 2000;371(38–45):29.

    Google Scholar 

  23. Vaccaro AR, Chiba K, Heller JG, et al. Bone grafting alternatives in spinal surgery. Spine J. 2002;2(3):206–15.

    Article  PubMed  Google Scholar 

  24. Bae H, Zhao L, Zhu D, Kanim LE, Wang JC, Delamarter RB. Variability across ten production lots of a single demineralized bone matrix product. J Bone Joint Surg Am. 2010;92(2):427–35.

    Article  PubMed  Google Scholar 

  25. Buser Z, Brodke DS, Youssef JA, et al. Allograft versus demineralized bone matrix in instrumented and noninstrumented lumbar fusion: a systematic review. Global Spine J. 2018;8(4):396–412.

    Article  PubMed  Google Scholar 

  26. Urist MR. Bone: formation by autoinduction. Science. 1965;150:893.

    Article  CAS  PubMed  Google Scholar 

  27. Bragdon B, Moseychuk O, Saldanha S, King D, Julian J, Nohe A. Bone morphogenetic proteins: a critical review. Cell Signal. 2011;23:609.

    Article  CAS  PubMed  Google Scholar 

  28. Burkus JK, Transfeldt EE, Kitchel SH, et al. Clinical and radiographic outcomes of anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2. Spine (Phila Pa 1976). 2002;27:2396–408.

    Article  PubMed  Google Scholar 

  29. Cahill KS, Chi JH, Day A, Claus EB. Prevalence, complications, and hospital charges associated with use of bone-morphogenetic proteins in spinal fusion procedures. J Am Med Assoc. 2009;302(1):58–66.

    Article  CAS  Google Scholar 

  30. Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 2011;11(6):471–91.

    Article  PubMed  Google Scholar 

  31. Center for Devices and Radiological Health. Public Health Notifications (Medical Devices)—FDA Public Health Notification: Life-threatening complications associated with recombinant human bone morphogenetic protein in cervical spine fusion. 2008. Accessed 10 Oct 2022.

    Google Scholar 

  32. Fu R, Selph S, McDonagh M, et al. Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion: a systematic review and meta-analysis. Ann Intern Med. 2013;158(12):890–902.

    Article  PubMed  Google Scholar 

  33. Simmonds MC, Brown JVE, Heirs MK, et al. Safety and effectiveness of recombinant human bone morphogenetic protein-2 for spinal fusion: a meta-analysis of individual-participant data. Ann Intern Med. 2013;158(12):877–89.

    Article  PubMed  Google Scholar 

  34. Galimberti F, Lubelski D, Healy AT, et al. A systematic review of lumbar fusion rates with and without the use of rhBMP-2. Spine. 2015;40(14):1132–9.

    Article  PubMed  Google Scholar 

  35. Zhang H, Wang F, Ding L, et al. A meta analysis of lumbar spinal fusion surgery using bone morphogenetic proteins and autologous iliac crest bone graft. PLoS One. 2014;9(6):e97049.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Crandall DG, Revella J, Patterson J, Huish E, Chang M, McLemore R. Transforaminal lumbar interbody fusion with rhBMP-2 in spinal deformity, spondylolisthesis, and degenerative disease—part 2: BMP dosage-related complications and long-term outcomes in 509 patients. Spine. 2013;38(13):1137–45.

    Article  PubMed  Google Scholar 

  37. Laurie AL, Chen Y, Chou R, Fu R. Meta-analysis of the impact of patient characteristics on estimates of effectiveness and harms of recombinant human bone morphogenetic protein-2 in lumbar spinal fusion. Spine (Phila Pa 1976). 2016;41(18):E1115–23.

    Article  PubMed  Google Scholar 

  38. Nickoli MS, Hsu WK. Ceramic-based bone grafts as a bone grafts extender for lumbar spine arthrodesis: a systematic review. Global Spine J. 2014;4(3):211–6.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Delécrin J, Deschamps C, Romih M, Heymann D, Passuti N. Influence of bone environment on ceramic osteointegration in spinal fusion: comparison of bone-poor and bone-rich sites. Eur Spine J. 2001;10(suppl 2):S110–3.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schroeder J. Stem cells for spine surgery. World J Stem Cells. 2015;7(1):186.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Skovrlj B, Guzman JZ, Al Maaieh M, Cho SK, Iatridis JC, Qureshi SA. Cellular bone matrices: viable stem cell-containing bone graft substitutes. Spine J. 2014;14(11):2763–72.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wegman F, Bijenhof A, Schuijff L, Oner FC, Dhert WJ, Alblas J. Osteogenic differentiation as a result of BMP-2 plasmid DNA based gene therapy in vitro and in vivo. Eur Cell Mater. 2011;21:230–42. discussion 42.

    Article  CAS  PubMed  Google Scholar 

  43. Jacobsen MK, Andresen AK, Jespersen AB, et al. Randomized double blind clinical trial of ABM/P-15 versus allograft in noninstrumented lumbar fusion surgery. Spine J. 2020;20(5):677–84.

    Article  PubMed  Google Scholar 

  44. Chai YC, Carlier A, Bolander J, et al. Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies. Acta Biomater. 2012;8(11):3876–87.

    Article  CAS  PubMed  Google Scholar 

  45. Lee SS, Hsu EL, Mendoza M, et al. Gel scaffolds of BMP-2-binding peptide amphiphile nanofibers for spinal arthrodesis. Adv Healthc Mater. 2015;4(1):131–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shah, J., Rao, N., Samtani, R.G. (2023). Understanding Spine Biologics for the Access Surgeon. In: O'Brien, J.R., Weinreb, J.B., Babrowicz, J.C. (eds) Lumbar Spine Access Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-48034-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48034-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48033-1

  • Online ISBN: 978-3-031-48034-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics